- 1. A bar magnet is broken in half. Each half is broken in half again, etc. The observation is that each piece has both a north and south pole. This is usually explained by:
 - A) Ampere's theory that all magnetic phenomena result from electric currents
 - B) our inability to divide the magnet into small enough pieces
 - C) Coulomb's law
 - D) Lenz' law
 - E) conservation of charge
- 2. Maxwell's great contribution to electromagnetic theory was his hypothesis that:
 - A) work is required to move a magnetic pole through a closed path surrounding a current
 - B) a time-varying electric flux acts as a current for purposes of producing a magnetic field
 - C) the speed of light could be determined from simple electrostatic and magnetostatic experiments (finding the values of m_1 and 5_0)
 - D) the magnetic force on a moving charge particle is perpendicular to both 2 and 4
 - E) magnetism could be explained in terms of circulating currents in atoms
- 3. A 1.2-m radius cylindrical region contains a uniform electric field that is increasing uniformly with time. At t = 0 the field is 0 and at t = 5.0 s the field is 200 V/m. The total displacement current through a cross section of the region is:
 - A) $4.5 \times 10^{-16} \text{ A}$
 - B) 2.0×10^{-15} A
 - C) $3.5 \times 10^{-10} \, \text{A}$
 - D) 1.6×10^{-9} A
 - E) 8.0×10^{-9} A
- 4. A 0.70-m radius cylindrical region contains a uniform electric field that is parallel to the axis and is increasing at the rate 5.0×10^{12} V/m \cdot s. The magnetic field at a point 0.25 m from the axis has a magnitude of:
 - A) 0
 - B) $7.0 \times 10^{-6} \,\mathrm{T}$
 - C) $2.8 \times 10^{-5} \text{ T}$
 - D) $5.4 \times 10^{-5} \, \text{T}$
 - E) $7.0 \times 10^{-5} \, \text{T}$
- 5. An electron traveling with speed v around a circle of radius r is equivalent to a current of:
 - A) *evr*/2
 - B) ev/r
 - C) $ev/2\pi r$
 - D) $2\pi er/v$
 - E) $2\pi ev/r$

Answer Key --

- 1. A
- 2. B
- 3. D
- 4. B 5. C