Amorphous and thin Si:H PV

February 28, 2012

Derived from Latin *silex*, *silicis*, meaning flint. *Amorphous silicon* was first prepared by J.J. Berzelius in 1824 by reducing K_2SiF_6 with molten potassium. The crystalline form, which the second allotrope form of the element, was first prepared by Deville in 1854. It was T. Thomson who named the element in 1831. He added the ending “on” in order to emphasize the analogy with boron and carbon.

http://elements.etacude.com/Si.php
Crystalline Si
- 1.1 eV indirect bandgap
- 4-fold coordination
- Fixed bond length and angles
- Long range order
- 1000 cm²/Vs

a-Si:H
- 1.7 – 1.9 eV direct bandgap
- \(\leq 4\)-fold coordination; 3-fold most common
- Variable bond lengths and angles
- Short range order
- Low carrier mobility \(\sim 1\) cm²/Vs

Figure 5.1 Schematic representation of the atomic structure of (a) single crystal silicon, (b) hydrogenated amorphous silicon.

Thin Film Solar Cells, ed. J. Poortmans and V. Arkhipov (Wiley, 2006)
http://engphys.mcmaster.ca/undergraduate/outlines/4x03/Lecture%2016-17,%20a-Si.pdf
Advantages of a-Si: Has a direct bandgap, ~100x more absorption than c-Si in visible range, 1 μm thick layer of a-Si:H absorbs 90% of solar energy. Can be deposited at low temperatures (<300 °C). Can be deposited on inexpensive substrates (glass, stainless steel).

![Graph showing optical absorption and penetration depth](image-url)

Figure 4. Curves for the optical absorption coefficient α and the penetration depth $d_\lambda = 1/\alpha$ of monochromatic light with photon energy $h\nu$ and wavelength λ, for wafer-type crystalline silicon (c-Si) and typical device-quality a-Si:H and μc-Si:H layers on glass. The curve for μc-Si:H has been corrected for light scattering due to surface roughness.
Some other facts....

- a-Si:H is typically deposited by plasma decomposition of SiH4, with other gases added for doping and alloying.
- Silane decomposes spontaneously at temperatures above ~450°C, forming polycrystalline or epitaxial silicon.
- Amorphous films can result at T < 550 °C, but films are typically of low quality because hydrogen is not retained.
- The deposition of a-Si:H requires a source of energy to dissociate the silane molecule.
- Most reactors are designed in a diode configuration where the plasma is confined between two parallel electrodes.
- Deposition usually takes place at a gas pressure of 0.1- 1 Torr, which is the optimum pressure to sustain the plasma.
- Amorphous Si can be deposited by a variety of methods, but PECVD (aka RF plasma, or glow-discharge deposition) is the most common.

The first plasma deposition system for amorphous silicon was developed by Chittick et al. (1969).
PECVC is Conformal, PVD (reactive sputtering) is more “line-of-site”

Other methods:

Hot-wire CVD
Liquid source pyrolysis

“Hydrogenated Amorphous Silicon” By R. A. Street
<table>
<thead>
<tr>
<th>Crystalline Si</th>
<th>a-Si:H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 eV indirect bandgap</td>
<td>1.7 – 1.9 eV direct bandgap</td>
</tr>
<tr>
<td>4-fold coordination</td>
<td>≤ 4-fold coordination; 3-fold most common</td>
</tr>
<tr>
<td>fixed bond length and angles</td>
<td>variable bond lengths and angles</td>
</tr>
<tr>
<td>long range order</td>
<td>short range order</td>
</tr>
<tr>
<td>1000 cm²/Vs</td>
<td>Low carrier mobility ~1 cm²/Vs</td>
</tr>
</tbody>
</table>

Figure 5.1 Schematic representation of the atomic structure of (a) single crystal silicon, (b) hydrogenated amorphous silicon.

Thin Film Solar Cells, ed. J. Poortmans and V. Arkhipov (Wiley, 2006)
http://engphys.mcmaster.ca/undergraduate/outlines/4x03/Lecture%2016-17,%20a-Si.pdf
Energetically, a large number of ways that dopants can be included

Larger defect density in doped a-Si:H
Absorber layer must be intrinsic a-Si:H
Requires p-i-n structure

Figure 5.8 Possible configurations of a phosphorous atom in an a-Si:H network: (a) the nondoping state P_3^0, (b) the defect compensated donor state $P_4^+ + Si_3^-$, (c) the neutral donor P_4^0.

Thin Film Solar Cells, ed. J. Poortmans and V. Arkhipov (Wiley, 2006)
http://engphys.mcmaster.ca/undergraduate/outlines/4x03/Lecture%2016-17,%20a-Si.pdf
• 10^{21} cm$^{-3}$ defects in pure a-Si
• Defects are amphoteric, making doping difficult
• Hydrogen in plasma passivates dangling bonds
e.g., H2 mixed with SiH4 in RF PECVD
< 10% H \rightarrow $10^{15} - 10^{16}$ cm$^{-3}$ defects

F. Urbach, Phys. Rev. 92, 1324 (1953).
Thin Film Solar Cells, ed. J. Poortmans and V. Arkhipov (Wiley, 2006)
http://engphys.mcmaster.ca/undergraduate/outlines/4x03/Lecture%2016-17,%20a-Si.pdf
R. Chittick accidentally obtained a-Si:H layers in a remote part of his plasma reactor. W. E. Spear and co-workers at Dundee University published the first systematic study on plasma-enhanced chemical vapor deposition (PECVD) with silane plus (optional) doping gases (1976). The figure shows schematically the results obtained by plotting the values of dark conductivity and dark conductivity activation energy E_σ against gas doping ratio. Also plotted is the Fermi level (E_f) obtained by taking the E_σ values and correcting for the so-called statistical shift.

Figure caption: Dark conductivity (σ), activation energy E_σ of dark conductivity, and estimated position of Fermi level (E_f) for a-Si:H layers, produced by PECVD on glass, as a function of gas phase doping ratio NPH3/NSiH4 (for n-type layers) and NB2H6/NSiH4 (for p-type layers). Values of σ and E_σ are from Spear et al. E_σ^* is here the estimated ‘true’ distance between band edge (E_c, E_v) and the Fermi level E_f where the statistical shift E_s has additionally been taken into consideration for n- and p-type layers according to Overhof and Thomas (1989) assuming a constant defect density of 10^{16}/cm2 eV. The equivalent bandgap of a-Si:H, or the ‘mobility gap’ as it is called here, is taken to be 1.7 eV, while drawing the graph; this corresponds to the generally published values.

Characteristics of PECVD films grown from Silane

Fig. 2.2. Illustration of the dependence of material properties on deposition conditions, showing variations of the hydrogen concentration and defect density on (a) substrate temperature, and (b) rf power (Knights and Lucovsky 1980); (c) shows the dependence of the growth rate on power and argon dilution (Street, Knights and Biegelsen 1978).

“Hydrogenated Amorphous Silicon” By R. A. Street
Consequences of Disorder

Fig. 1.1. The correspondence between features of the atom and the resulting electronic properties.

STRUCTURE ➔ **ELECTRONIC PROPERTIES**

- Bonding disorder ➔ Band tails, localization, scattering
- Structural defects ➔ Electronic states in the band gap
- Alternative bonding configurations ➔ Electronically induced metastable states

Fig. 5.1. Schematic representation of the atomic structure of (a) single crystal silicon, (b) hydrogenated amorphous silicon.

Fig. 1.9. The density of states distribution near the band edge of an amorphous semiconductor, showing the localized and extended states separated by the mobility edge.

Fig. 1.6. Schematic density of states distribution for an amorphous semiconductor showing the bands, the band tails, and the defect states in the band gap. The dashed curves are the equivalent density of states in a crystal.

“Hydrogenated Amorphous Silicon” By R. A. Street
Fig. 1.8. The Anderson model of the potential wells for (a) a crystalline lattice and (b) an amorphous network. V_0 is the disorder potential.

(a) Crystalline

(b) Amorphous

Disorder potential V_0

Fig. 1.7. Illustration of the wavefunctions of extended and localized states of an amorphous material, compared to the extended states of a crystal.

Fig. 1.2. Schematic diagram of the atom pair distribution functions for a crystalline and amorphous solid and a gas, scaled to the average separation of nearest neighbor atoms, R_{nn}, showing the different degree of structural order.

Crystalline solid

Amorphous solid

Gas

Fig. 1.10. Model showing the tunneling between two localized states separated by distance R and energy E_{12}; R_0 is the localization length.
Various Si-H Species, and the growing interface

Fig. 2.10. Illustration of some possible processes taking place at the a-Si:H surface during growth.

- Non-bonding of SiH₃ to H-terminated surface
- Bonding of SiH₃ at surface dangling bond
- Removal of surface H
- Release of H₂

\[\equiv \text{Si-H} + \text{SiH}_3 \rightarrow \equiv \text{Si-H} + \text{SiH}_4 \]

or

\[\equiv \text{Si-H} + \text{H} \rightarrow \equiv \text{Si-H} + \text{H}_2 \]

Fig. 2.17. The set of Si-H vibrational modes for SiH, SiH₂, and SiH₃ groups, with calculated frequencies as indicated. The frequencies in brackets are estimates (Lucovsky et al. 1979).

<table>
<thead>
<tr>
<th>Mode</th>
<th>SiH</th>
<th>SiH₂</th>
<th>SiH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stretch</td>
<td>2000</td>
<td>2090</td>
<td>2140</td>
</tr>
<tr>
<td>Bend (rock or wag)</td>
<td>630</td>
<td>(850)</td>
<td>862</td>
</tr>
<tr>
<td>Symmetric Stretch</td>
<td>2090</td>
<td>2140</td>
<td>862</td>
</tr>
<tr>
<td>Asymmetric Stretch</td>
<td>(850)</td>
<td>862</td>
<td></td>
</tr>
<tr>
<td>Scissors Bend</td>
<td>880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td>880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wag</td>
<td>880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twist</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Hydrogenated Amorphous Silicon” By R. A. Street
Hydrogen dilution of silane can be used to control the material during growth. A high concentration of hydrogen causes the deposited films to become crystalline rather than amorphous. The crystallite size is small, often less than 100 Å, so the material is called microcrystalline silicon. The power-dilution diagram for hydrogen, below, shows the transition to microcrystallinity. Dilution to about 5 % silane is needed to cause crystallization and the effect is enhanced by high rf power. The transition is fairly abrupt, and a mixed phase material is only observed in a narrow region near the dividing line.

Fig. 2.5. Diagram showing the typical deposition conditions for microcrystalline silicon and a-Si:H films deposited from silane/hydrogen mixture at different rf power.

Fig. 2.6. Illustration of (a) the shadowing effect of atoms on the growth surface, and (b) the resulting chain-like growth morphology when the sticking coefficient is high.

Wronski, et al., Proceedings of RIO 02 - World Climate & Energy Event, January 6-11, 2002

“Hydrogenated Amorphous Silicon” By R. A. Street
• The doping is not as straightforward in a-Si:H; E_f can be pushed only half way towards the conduction and valence band edges even with heavy doping.
• Doping has a detrimental effect on a-Si:H layer quality, because it leads to the many silicon dangling bonds (recombination centers).
• In a p/n crystalline solar cell, carrier collection is by minority carrier diffusion within the p- and n-layers. Long diffusion lengths (> 200 μm) assist carrier collection over the whole useful range of the solar cell thickness where significant optical absorption takes place.
• In a-Si:H layers, on the other hand, minority carrier diffusion lengths are extremely small (around 0.1 μm), and the device cannot rely on collection of photogenerated carriers by diffusion alone.
• The p–i–n structure builds a field into the device, and the field is distributed across the intrinsic (i) portion of the device.
• The intrinsic portion of the device typically has the best characteristics for absorption, photogeneration, and carrier lifetime, as compared to the p- and n-type regions
• The p–i–n-type a-Si:H cell was introduced by Carlson and Wronski in 1976.

Amorphous silicon solar cell

D. E. Carlson and C. R. Wronski

RCA Laboratories, Princeton, New Jersey 08540
(Received 6 February 1976)

Thin film solar cells, ~1 μm thick, have been fabricated from amorphous silicon deposited from a glow discharge in silane. The cells were made in a p-i-n structure by using doping gases in the discharge. The best power conversion efficiency to date is 2.4% in AM-1 sunlight. The maximum efficiency of thin-film amorphous silicon solar cells is estimated to be ~14–15%.

FIG. 1. Current-voltage curve for device #8-19 under illumination comparable to AM-1 sunlight. Also included in the figure is a schematic diagram of a p-i-n structure.
Superstrate configuration: Deposition on TCO coated glass

n- and p-regions are thin since minority carriers have low mobility. Most absorption occurs in thick i region, where carriers are collected by drift. Low doping in i-region to establish electric field (10^4 V/cm).
TCO is textured for light trapping, relatively thick for high conductivity (often ITO).

Table 5.2. Properties of several TCO front electrode films

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
<th>ITO</th>
<th>SnO$_2$:F APCVD</th>
<th>ZnO:B LPCVD</th>
<th>ZnO:Al sputtering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission (350–1000 nm)</td>
<td>>90%</td>
<td>95%</td>
<td>90%</td>
<td>90%</td>
<td>90–95%</td>
</tr>
<tr>
<td>Bandgap [eV]</td>
<td>>3.5</td>
<td>3.7</td>
<td>4.3</td>
<td>3.4</td>
<td>≈3.45*</td>
</tr>
<tr>
<td>Sheet resistance [Ω/]</td>
<td><10</td>
<td>3–5</td>
<td>6–15</td>
<td>6–15</td>
<td>4–15</td>
</tr>
<tr>
<td>Contact resistance to amorphous p$^+$ layer</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>forms</td>
<td>forms</td>
</tr>
<tr>
<td>Roughness</td>
<td>textured</td>
<td>negligible</td>
<td>ohmic</td>
<td>barrier</td>
<td>barrier (after treatment)</td>
</tr>
<tr>
<td>Plasma durability</td>
<td>resistant</td>
<td>low</td>
<td>good</td>
<td>excellent</td>
<td>excellent</td>
</tr>
</tbody>
</table>

*depends on electrical properties (mobility, carrier density, Burstein—Moss shift).

Figure 5.11. A single junction p-i-n a-Si solar cell structure.

Figure 5.13. Scanning electron microscopy pictures of surface textured TCO substrates: (a) SnO$_2$:F Asahi U and (b) 10 s etched ZnO:Al TCO surface.

Thin Film Solar Cells, ed. J. Poortmans and V. Arkhipov (Wiley, 2006)
Reflectances from cells with TCO of low and high haze, respectively. Measurement is performed with light incident from the glass side, in the glass/TCO/p–i–n/metal configuration.
Steady growth in performance, but topped-out since 2000

Figure 1. Advances in Stabilized efficiency of a-Si:H solar cells.

Wronski, et al., Proceedings of RIO 02 - World Climate & Energy Event, January 6-11, 2002
Staebler-Wronski Effect

a-Si:H efficiency degrades ~30% under illumination over a time scale of months due to creation of additional dangling bond defects

Must distinguish between initial efficiency versus stabilized efficiency

![Graph showing power versus light soak time for single-junction and triple-junction cells.]

Figure 12.5 The conversion efficiency in *a*-Si:H-based solar cells declines noticeably upon the first exposure to sunlight. The figure illustrates this decline under a solar simulator (100 mW/cm²) for a single-junction cell (260-nm *i*-layer thickness) and for a triple-junction module made at United Solar Systems Corp. [14, 15]; the dashed lines indicate the initial power measured for each device.
Staebler-Wronski Effect

Defects can be annealed out

Leads to seasonal efficiency variations

Figure 12.6 Seasonal variations in the average conversion efficiency (solid symbols) of an amorphous silicon triple-junction module [18], along with the daily mean temperature (open symbols).
Alloys

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy with C</td>
<td>Methane, CH(_4) in PECVD</td>
</tr>
<tr>
<td>Alloy with Ge</td>
<td>Germane, GeH(_4) in PECVD</td>
</tr>
<tr>
<td>a-Si:H</td>
<td>Bandgap 1.7 – 1.8 eV</td>
</tr>
<tr>
<td>a-Si(_{1-x})Ge(_x):H</td>
<td>Bandgap from 1.1 eV (x=1) to 1.7 eV (x=0)</td>
</tr>
<tr>
<td>a-SiC:</td>
<td>Larger bandgap</td>
</tr>
</tbody>
</table>

Diagram:

- **Grid**
- **ITO**
- **p\(_3\)**
- **i\(_3\)** a-Si alloy
- **n\(_3\)**
- **p\(_2\)**
- **i\(_2\)** a-SiGe alloy
- **n\(_2\)**
- **p\(_1\)**
- **i\(_1\)** a-SiGe alloy
- **n\(_1\)**
- Zinc oxide
- Silver
- Stainless steel

\[E_g = 1.8 \text{ eV} \]

\[E_g = 1.6 \text{ eV}, \ 10-15\% \text{ Ge} \]

\[E_g = 1.4 \text{ eV}, \ 40-50\% \text{ Ge} \]

Flexible Solar Cells (Wiley, 2008)
Currents at max. power point need to be matched for series connected cells

Using Tunnel junctions

From Dunlap, “Experimental Physics”, Oxford University Press, 1988
14.6% record stabilized efficiency (United Solar)

Figure 5.16 (a) Initial AM1.5 J-V characteristic and (b) quantum efficiency of an a-Si:H/a-SiGe:H/a-SiGe:H triple junction solar cell. (Courtesy of Jeff Yang, United Solar Ovonic Corporation.)
Multijunction Cells

Combine layers of different bandgaps to more efficiently convert different regions of the spectrum into carriers
Equivalent to placing cells in series
Higher V_{oc} = sum of component cell V_{oc}’s
Higher efficiency

Figure 3.9 Amorphous silicon schematic of a triple-junction structure. (Reproduced from Uni-solar.com, with permission).
Substrate Configuration (suitable for flexible substrates, Roll-to-Roll)
e.g., United Solar, Xunlight

Xunlight Triple-Junction

http://engphys.mcmaster.ca/undergraduate/outlines/4x03/Lecture%202016-17,%20a-Si.pdf