Consider the the band diagram for a homojunction, formed when two bits of the
same type of semicondutor (e.g. Si) are doped p and n type and then brought into
contact.
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Majority carriers diffuse across the Depletion
Region (because the electric field is reduced),

where they become minority carriers and
recombine (aka minority carrier injection)
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A bit about Density of States....

The DOS in a semiconductor is obtained by solving the Schrodinger equation
for the particles in the semiconductor. Rather than solving for the complex
potential in the semiconductor, one can use the particle-in-a box model,
assuming that the particle is free to move within the material. The boundary
conditions which express the fact that the particles can not leave the
material, force the density of states in k-space to be constant. The DOS are
approximately parabolic in energy near the conduction and valence band
edges (i.e. the DOS goes with the square root of the energy distance above
(below) the conduction (valence) band minimum (maximum)

Density of states as f(E):
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....The Fermi function tells us about the occupation of these states
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Density of carriers in the band can be obtained (for, e.g., electron in the conduction band):
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For non-degenerate semiconductors, we require that the Fermi level be at
least 3kT (~ 75 meV at room temperature) away from the band edge....

Then, the Fermi function can be replaced by a simple exponential term....
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Where the effective Density of States in the Conduction and Valence bands are:

Ne = E[M]E’FE and Np= 2[2m:¢]3;2 (with units of cm3)
Interestingly, E,~E, Ep—E, —E,
np=N,N.e ' e ¥ =N, N.e =n’
Which gives the Law of Mass action: )
np =n,

http://ecee.colorado.edu/~bart/book/carriers.htm
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Basic Equations for Solving for the Electric Field, Transport, and Carrier Concentrations

Poisson's equation: T T T T T T T T T e 1wy

: Til:m,:-':l z:]___,{}I:I=:_L'=E:] :
°E : T £ :
gz _P_ i(p(x} —n(x)—N, + NE,) | dotx :
Transport equations: IL o fﬁ‘_ _______________ )
_ dn(x) o C yepn
J, =qun(x)E+qD, ; (first term is drift. second is diffusion)
X
= dp(x)
J,=qu,p(x)E—qD, }:f—r
Continuity equations:
General conditions Under thermal equilibrium and steady state conditions
d 1 aJ 1 ar
g% (U-6) ~ 5 (U-0G)
dt q o ' q &
dp 1d, 1 a7
L__Tri(U-06) ~Zr o (U-G)
dt q o q & '

where U and G are the recombination and generation rates in the particular material and depend on
the details of the device and may also depend on distance.

http://www.pveducation.org/pvcdrom/pn-junction/basic-equations



General Approach to Solving for the Electric Field, Transport, and Carrier Concentrations

For arbitrary charge distributions, band

diagrams, junction types, the equations may be : :
solved using numerical approaches, and many : :
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General Procedure using the depletion approximation:
1. Divide the device into regions with an electric field and without an electric field.

2. Solve for electrostatic properties in the depletion region (Region Il on the diagram). This
solution depends on the doping profile assumed. Here we will restrict the calculations to
constant doping profiles.

3. Solve for the carrier concentration and current in the quasi-neutral regions (Regions | and
lIl on the diagram) under steady-state conditions.

The steps in this are:

(a) Determine the general solution for the particular device. The general solution will
depend only on the types of recombination and generation in the device.

(b) Find the particular solution, which depends on the surfaces and the conditions at
the edges of the depletion region.

4. Find the relationship between the currents on one side of the depletion region and the
currents on the other side. This depends on the recombination/generation mechanisms
in the depletion region.

Region Il Region
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http://www.pveducation.org/pvcdrom/pn-junction/basic-equations
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Solving for Region With Electric Field

1. Depletion approximation: the electric field is confined to a particular region.

No free carriers (n(x), p(x) = 0 ) in depletion region.

3. We can assume no free carriers since the electric field sweeps them out of the
depletion region quickly. No free carriers means (1) transport equations drop
out and (2) no recombination or generation, so the continuity equation
becomes:

N

14d]
—2=(U-G)=0
g dx
This means that J_ is constant across the depletion

region. Similarly, J , is also constant across the depletion region.

4. Abrupt or step doping profile (N,-, N,* are constant).
5. All dopants are ionized N, = N,, Ny* = Np).
6. One-dimensional device.

http://www.pveducation.org



Solution

The only equation left to solve is Poisson’s Equation, with n(x) and p(x) =0,

abrupt doping profile and ionized dopant atoms. Poisson’s equation then

becomes: .
E_P_41 N N
—_—— = — —Ji’r -|- T
A = < I: A ‘ Ei':l

_{—{INA, when —x, =x =0
p= gN,, when0=x<x,

Where € =€, € ¢, is the permittivity in free space, and & is the permittivity in
the semiconductor and x, and x,, are the edges of the depletion region in the
p- and n-type side respectively, measured from the physical junction between
the two materials. The electric field then becomes

r N N
J‘—qfdx=—qfx—l—ﬂl, for—x, =x <0

N N
fq;dx=q;x—|—{?z, for0 =<x < x,

http://www.pveducation.org



Solution (continued...)

The integration constants C, and C, can be determined by using the depletion
approximation, which states that the electric field must go to zero at the
boundary of the depletion regions. This gives:
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Solution (Electric field distribution in the space charge)

The maximum electric field occurs at the junction between the p- and n-type material.
Further, we know that the electric field lines must be continuous across the interface, such
that the electric field in the p-type side and the n-type side must equal each other at the
interface or when x = 0. Putting x = 0 in the above equation for electric field and setting the
two values of E equal to each other gives: N,x, = Npx, .This equation makes physical sense
since it states that the total charge on one side of the junction must be the same as the
total charge on the other. In other words, if the electric field is confined to the depletion
region, then the net charge in Region Il must be zero, and hence the negative charge and
the positive charge must be equal. N, x A is the total negative charge, since N, is the
charge density and x A is the volume of the depletion region (A is the cross-sectional area
and xp is the depth). Similarly, N,x A is the positive charge. The cross sectional area (A) is
the same and cancels out.
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