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Physics 6/7180:  Modern Physics Laboratory, Spring 2010  
 
Experiment B5: Alpha Particle (He2+) Spectroscopy with Surface Barrier Detectors  
 
A. Introduction to Surface Barrier Detectors  
The surface barrier detector is a semiconductor solid-state detector.  Like the high purity 
germanium (Ge) detector, it is essentially a p-n junction device.  However, it is made out of a 
silicon (Si) wafer rather than a large Ge crystal.  These differences (Si vs. Ge, and a wafer versus 
a thick crystal) are closely related to the fact that we are detecting charged particles (very short 
range due to strong interaction) in the surface barrier detector and (uncharged) high energy 
photons in the Ge detector (quite long range).  When a charged particle passes the p-n junction, it 
ejects electrons from the Si, slowing itself down.  This process repeats until the charged particle 
losses all of its kinetic energy and stops inside the Si (if the thickness of the Si is enough to stop 
the particle).  The average electron ejection energy in Si is about 3 eV.  For a 5 MeV alpha 
particle, the stopping distance in silicon is about 25 μm, and about 1.67 million electrons will be 
produced.  Usually, the p-n junction is biased such that generated electrons are collected and 
together create a pulse indicating passage of a charged particle. For a sufficiently thick Si wafer 
that stops a charged particle, the number of electron-hole pairs generated will be proportional to 
the incident energy of the charged particle. 
 
The Si diode surface barrier detector used for this lab in Spring 2010 is 150 mm2 in area (with 
the assistance of the instructor or TA, this should be confirmed the first week at the start of each 
lab session, and prior to initiating the vacuum pump). 
 
B. Energy loss of alpha particle in matter  
For alpha particles coming naturally out of radioactive nuclei, their energies are typically 
between 3 and 7 MeV.  The β-factor (β =v/c) of these particles is very small (e.g., ~0.05 for 5 
MeV alpha particles).  In this case, the nonrelativistic formula for energy loss dE of charged 
particle in matter of length dx can be written as (see Reference 1):  
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where all units are in c.g.s. system with:  
z: charge of the incoming particle (in integral units of the electron charge, e);  
v: velocity of the incoming particle;  
ne: electron density of the scattering material;  
I: average ionization energy of the scattering material;  
me: electron mass.  

 
Since the numerical number inside the logarithm changes slowly, the energy loss is characterized 
as proportional to (z2ne) and inversely proportional to (2). For a given alpha source then, the 
energy loss is proportional to the electron density of the scattering materials ne.  
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C. Range of alpha particles in matter  

Equation (1) can be integrated to get the range R of the alpha particle in matter. The range is 
defined as the total length of material in which the alpha particles traverse before coming to rest.  
 
From this definition, we can write:  
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where f(E) is the right-hand side of Equation (1) and E = 12 M v
2  

with M being the mass of the alpha particles.  
 
For a given alpha source, the range can be easily figured out from the definition of the f(E) to be 
inversely proportional to the electron density of the scattering materials ne.  
This experiment consists of four parts:  

1. Calibration of the channels by pulser and 241Am source;  
2. Measurement the activity of the 241Am;  
3. dE/dx curves for alpha particle in air and in CO2. 
4. Measurement of ranges of alpha particle in air and in CO2;  

For the convenience of using the calibration results, you may do part 1 and part 3 first and then 
part 2 and part 4. 
 
D. Electronics setup:  
 

 
 

Figure 1.  Electronics setup for alpha spectroscopy experiments. 
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Figure 2. Vacuum chamber and monitoring configuration 
 
 
Procedures:  
 
Part One: Energy calibration using pulser and 241Am source: 
1)  Prior to beginning the experiment, ensure that you can read the source-detector distance 

accurately from outside the vacuum housing.  With assistance from the instructor or TA, 
establish the position calibration using a ruler and the distance scale attached to the chamber.  
Record the position and corresponding distance scale reading so that you can determine the 
source-detector distance without again opening the vacuum chamber. 

 
2)   Connect the electronic modules according to Figure 1. Set the position of the 241Am alpha 

source to be about 1 cm in front of the surface barrier detector.  Before pumping down the 
vacuum inside the chamber, check the following (refer to the Figure 2): close the air leak 
valve; close the leak valve; and open the main gate valve to the mechanical pump.  Start 
pumping the chamber and watch for the reading on the vacuum gauge.  In about 2 minutes, 
the reading, which indicates the magnitude of the pressure differential relative to atmospheric 
pressure, should approach 740 mm Hg.   If the relative vacuum does exceed 740 mm Hg at 
that time, it likely indicates a leak somewhere. Check the seal of the main chamber and the 
tightness of the air leak valve and CO2

 
leak valve.  If the relative vacuum exceeds 700 mm 

Hg, let the pumping continue for another 5 minutes.  
 
3)  Slowly raise the bias voltage to the surface barrier detector from 0 volt to -150 V. Do not 

supply more than -150 V to this detector.  Adjust the gain of the 575 amplifier so that 
unipolar signal height in the oscilloscope is about 5.48 volt.  
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4)  Accumulate the spectrum with the multichannel analyzer (MCA) long enough to have about 

400 counts in the peak channel.  Use the utilities in MCA to determine the centroid channel 
number for the peak.  Record this centroid channel as C0. 

 
5)  Turn on the 480 pulser and set its pulse-height dial at 548/1000. (The 241Am alpha particle is 

emitted with 5.48 MeV energy).  Adjust the attenuators and the calibration control until the 
pulse on the oscilloscope is about 5.48 V.  Accumulate the pulse from the pulser for about 20 
seconds. Check if the peak from the pulser has the same centroid channel as the C0, the 
centroid peak from the 241Am alpha source.  If not, carefully adjust the calibration control on 
the pulse generator such that the pulse peak is the same as the C0.  After this calibration, the 
reading of the pulse-height represents an energy scale, that is, 548/1000 represents 5.48 MeV 
and 600/1000 represents 6.00 MeV and so on.  

 
6)  Erase the MCA and get channel numbers for the energies from 1.00 to 8.00 MeV at 1 MeV 

interval by setting the pulse-height at 100/1000 to 800/1000.  Accumulate at each point for 
about 30 seconds.  Record the peak location and peak width for each energy.  Perform a 
linear fit to find the energy calibration equation for the run and the energy resolution in keV.  

 
Part Two: Measurement of activity of the 241Am source:  
1)  Set the source-detector distance to about 5 cm by moving the source.  The scale outside the 

vacuum chamber can be used for this purpose. (Note the maximum separation is 7 cm.) 
 
2)  Accumulate the spectrum for long enough to have the peak counts about 1000.  Set the 

region of interest using the MCA utilities and find the total counts under the peak.  Using the 
results for the number of counts under the peak, together with the Live Time for that 
measurement, calculate the activity in μCi from the definition: 

 
   1 μCi = 3.7 x 104 disintegrations/sec  (into 4π steradians). 
 
  The surface area of the circular surface barrier detector used in this experiment is 150 mm2. 

 
3)  Repeat the activity calculation twice more using source distances of 3.5 cm and 2 cm.  Use 

these three measurements to establish the best value for the activity of the source. 
 

Part Three: Energy loss of Alpha particle in air and CO2:  (Parts three and four may be 
combined using one set of data.). 

1) The energy loss of alpha particles in air can easily be measured by changing the pressure 
of the air which the alpha particle traverses.  The lower the pressure inside the chamber, 
the fewer the air molecules that alpha particle will encounter when an alpha particle 
travels from the source to the detector, therefore, the smaller the energy loss for alpha 
particles.  

2) Set the source-detector detector to about 4.0 cm.  Close all leak valves and open the main 
gate to pump down the vacuum inside the chamber.  After 5 minutes pumping, the 
vacuum inside the chamber should be in the range of -744 mm Hg (relative to atm), 
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which is low enough that all alpha particles will reach the detector without measurable 
energy loss.  

3) Close the main gate to stop the pumping on the chamber.  Slowly leak in some air by 
slowly open the air leak valve.  Watch the MCA for the energy peak to be about 0.5 MeV 
below the full energy peak (use the calibration to determine how many channels is 
equivalent to 0.5 MeV).  Erase the spectrum and start to accumulate the spectrum for this 
energy loss for long enough such that the peak channel reaches about 100 counts.  Stop 
and save the spectrum.  Record the pressure in the high vacuum gauge.  

4) Repeat the step 3) for the energy losses roughly at 1.0 1.5,... 4.0 MeV.  Do not forget to 
save the spectrum for each energy loss. 

5) Determine the centroid of each energy loss peak and convert them to energies by the 
calibration curve.  Convert the 4.0 cm source-to-detector separation into effective length 
in air by the equation 3.  Plot the energy of alpha particle vs. the effective air length.  This 
is an E(x) curve.  By taking the difference of ΔE vs. Δx, you can also plot the dE/dx 
curve.  

6) Pump down the vacuum again and repeat the steps 2) to 5) with CO2 gas. Plot the dE/dx 
curve for CO2 and compare it to that for air to verify the electron density dependence as 
predicted in equation (1).  

 
Part Four: Range of alpha particles in air and in CO2:  

1) Although the range can be measured by changing the distance from the source to the 
detector until the counting rate drops to zero, this approach introduces unnecessary 
normalization procedures due to the fact that the solid angle seen by the detector changes 
as the source-detector separation changes. A more appropriate arrangement is to fix the 
source-detector separation and pump down the vacuum inside the chamber and then let 
some air in.  In this way, one can control the "thickness" of the air by monitoring the 
pressure inside the chamber.  If the pressure reading inside the chamber is p and the range 
of alpha particle in this pressure is Rp, then the effective range in atmosphere is R0

 
with: 

 

 R Rp
p
p0 0

    (3) 

 
   where p0 is the atmospheric pressure.  
 

2)  Set the source-detector detector to the maximum, about 6.5 cm and record this distance as 
Rp (to be clear, Rp is the source-detector distance for these measurements).  Close all leak 
valves and the main gate.  

3)  Open the main gate to pump down the vacuum inside the chamber.  After 5 minutes 
pumping, the vacuum inside the chamber should be in the range of -744 mm Hg (again, 
relative to 1 atm = 760 mm Hg) which is low enough that all alpha particles will reach the 
detector without being stopped.  Get the counts for this vacuum and keep the number for 
reference.  
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4)  Close the main gate to stop the pumping on the chamber.  Slowly leak in some air by 
slowly opening the air leak valve until the vacuum gauge reading is 700 mm Hg.  Close 
the air leak valve and get the counts for this air pressure.  

5)  Repeat step 4 for other pressures (carefully dropping through the pressures 600 mm Hg, 
500, 400, …) until the counts begin to drop apparently.  At this point, you need to get 
counts for pressures at smaller steps until the count rate is totally zero.  Record this 
pressure as p.  Calculate the effective range in air R0 by the equation 3.  

6)  You may wish to repeat the steps 1) to 5) to verify your data.  This time use greater care by 
taking smaller steps when approaching the point where counts begin to drop.  

7)  Repeats steps 1) to 6) by using CO2 gas.  Compare the range R0 in air and in CO2 to 
confirm the dependence of range on the electron density as shown in equations 1 and 2. 

8)  Stop the mechanical pump.  Open the main gate and open the air leak valve.  Don’t leave 
the mechanical pump under vacuum.  

 
Safety Issues:  

(a)  Handling of alpha source: Since alpha particles are easily stopped by almost any macroscopic 
objects, the alpha source are shipped as an OPEN source.  That means the alpha source is 
exposed without any coverage.  Neither the students nor the TA should handle the source 
unless they have been trained and certified by the University of Toledo Radiation Safety 
Office.  If you suspect you may have touched the source, wash with soap immediately before 
more areas get contaminated.  

(b)  Handling of the surface barrier detector: For the same reason that an alpha particle can not 
penetrate any material with a considerable thickness, the surface barrier detector is not 
covered by any coating except a thin gold coating that serves as an electrode and part of the 
p-n junction.  Do not touch the gold coated surface with your finger or any tools.  

 
Reference:  

1. Experiments in modern physics, by A. C. Melissinos, pp.155-163. 
 
Notes on your write-up:  

A. Be sure to include values for the Activity (one value, and one uncertainty), and for the 
range of the Am-241 alpha particles in air and in CO2 at 1 atmosphere pressure.  Include 
uncertainties for your range values as well, of course. 

B. Include the radioactive decay equation accounting for the source of alpha particles we’re 
using here (241Am) .  In analogy with a chemical reaction, reactant(s) on the left hand 
side, and products on the right hand side.  For example, the decay of tritium looks like 
this: 

 

eeHeH  3
2

3
1  

 
C. Although you will not open the vacuum chamber nor actually do this, assume that you 

held your hand (in air, at 1 atm pressure) at a distance of 1 cm from our 241Am source for 
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a duration of 30 seconds.  Calculate the hypothetical dose equivalent you would receive 
to your hand from our alpha particle source, clarifying your assumptions for the solid 
angle of the hand, the mass of the hand, etc.  Know (and use) the proper units of, and 
procedure for calculating, the “dose equivalent”.  Keep in mind that the energy of the 
alphas may very well not be 5.47 MeV after 1 cm in air…  Express your answer in units 
of Roentgen Equivalent Man (rem).  Repeat the calculation for the same conditions, 
replacing the air with CO2. 

D. Comment briefly on the application, if any, of alpha particles in medicine.  What types of 
therapy have used alpha particles, and are they an accepted form of treatment bin some 
cases?  Please explain the unique characteristics of alpha particles for medicine. 

 
 
 
 


