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Physics 6180/7180: Graduate Physics Laboratory 
 
Experiment CM4: Current-voltage curves in semiconductor diodes and solar cells 
 
References: 1. Kittel, chap. 8, pp. 216-221 (7th ed); 

2. S.M. Sze, The Physics of Semiconductors 
3. E.S. Yang, Fundamentals of Semiconductor Physics, McGraw-Hill, New 

York, 1978 
4. D.K. Schroder, Semiconductor Material and Device Characterization, 

Wiley, New York, 1990. 
Goals:  -to study the current flow across interfaces between two dissimilar materials 

-to study the case of n-p semiconductor junctions 
-to study the case of metal-semiconductor junctions (Schottky barriers) 
-to analyze the results in terms of the electron and hole recombination and 
generation currents 
-to apply the results to the case of light-generated reverse currents in a solar cell 

 
Equipment: -Keithley 2400 Source meter (this and the simulator are located in MH 3014) 

-xenon lamp solar simulator for air mass 1.5 simulation 
-semiconductor n-p junction (diode), metal-semiconductor Schottky diode, and 
silicon and CdTe solar cells 

 
Background: 

Read in Kittel, chapter 8, especially the major sections on IMPURITY CONDUC-
TIVITY and p-n JUNCTIONS.  The role of the Fermi energy is important to understand.  
Recall that the Fermi energy is technically the value of the chemical potential at zero 
temperature.  However, the Fermi energy or Fermi level is often loosely treated as the chemical 
potential at all temperatures since in most semiconductors the chemical potential does not 
change much with temperature--at least up to about room temperature.  Recall that both electrons 
and holes in a semiconductor obey Fermi statistics with the occupation probability equal to 
 

 
and 

 

 
where ε is the electron or hole energy (measured from the top of the valence band), T is the 
temperature, and μ = εF is the chemical potential (or loosely, the Fermi level).  When one 
includes ge(ε), the density (per unit volume and per unit energy) of electron states in the 
conduction band and gh(ε) the density of hole states in the valence band, one obtains the density 
(per unit volume) of electrons in an intrinsic (undoped) semiconductor as 
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Similarly for the density per unit volume of holes, 
 
 
 
 
 
In the equations above, the zero of energy is taken to be the top of the valence band.   Eg is the 
energy gap between the top of the valence band and the bottom of the conduction band. 
 

If so-called "shallow" impurities are added to the semiconductor, then the density of 
electrons and holes will be greatly modified.  Shallow dopants are those which occupy states 
very near the extrema of either the valence band or the conduction band--i.e., energy difference 
less than kT at room temperature.  Then for donors, the density of electrons is often about equal 
to the density of donor atoms and the density of holes may be nearly equal to the density of 
acceptor atoms.   Although, of course, if both donor and acceptor impurities are added then some 
compensation will occur.  Although in an "intrinsic" semiconductor (pure, with insignificant 
numbers of donors or acceptors) the Fermi level (εF) lies about mid-gap (~Eg/2), when donors are 
added the Fermi level resides between the donor level and the bottom of the conduction band.  
Similarly when acceptors are added, the Fermi level will lie just above the top of the valence 
band at low temperature.  (Recall from Eqs. 1 and 2 that the chemical potential (~Fermi level) is 
the energy at which the occupation probabilities fe and fh are equal to 1/2.) 

Even with this very brief and oversimplified summary it should be possible to understand 
the band bending which occurs when n-type and p-type regions are adjacent in a semiconductor. 
 The situation is sketched below in Figure CM4-1, taken from E.S. Yang.  When free charges 
(electrons or holes) are present in the two regions, electrons will flow from the n-type region 
where their energy is high to the p-type region where their energy can be much lower.  This will 
leave the fixed donor atoms deficient of one electron and therefore positively charged.  The 
electrons reaching the p-type side will recombine with holes to create negatively charged 
acceptor ions.  This diffusion will continue until the resulting electric field is strong enough to 
inhibit further flow along the concentration gradients of electrons and holes.  You should be able 
to convince yourself that the final result gives the band bending shown in the figure and that the 
final electro-chemical potential is constant throughout the semiconductor when no external bias 
is applied.  In order for the final μ to be constant, however, the band banding must be roughly as 
shown. 

In many situations, the n- and p-type regions have quite different doping densities, but 
approximately constant doping densities in each region.  In those cases the junction conditions 
may be approximated as a "one-sided step junction."  For this situation, the dopant densities, 
electric field, and potential are sketched in Fig. CM4-2 (also from E.S. Yang). 

Although in equilibrium the net density of electrons and holes in the n-type and p-type 
regions is fixed, at finite temperature there is a small recombination current of electrons up the 
potential barrier into the p-type side.  Similarly, at finite temperature, there is a generation 
current caused by electron-hole pairs which are thermally generated in the p-type region and the 
electrons slide down the potential ramp into the n-type side.  Similarly there is a hole 
recombination current and a hole generation current.  At equilibrium, however, these currents 
exactly balance so that there is no net flow across the junction. 
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In the approximation of the one-sided step junction, solution of the Poisson equation 
shows that there will be a region in the lightly doped semiconductor depleted of carriers.  The 
width of this “depletion region” is shown to be  

 
where κ is the dielectric constant, εo = 8.8 x 10-12 C2/N-m2, Vbi  is the built-in potential (typically 

about 2/3 of the band gap 
energy), VA is the externally 
applied voltage, and Na is the 
ionized charge density of 
acceptors in the p-type region.  
(If the lightly doped region is 
n-type, then replace Na with the 
density of ionized donors, Nd.) 
 
 
 Fig. CM4-1 
 
 
 
 
 
 
 
 
 
 
 
 Fig. CM4-2 
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To understand current flow however, we need to understand what happens when a 
voltage is applied across the junction.  The electron potential energy across a step junction under 
forward and reverse bias is sketched in Fig. CM4-3 (again from Yang's book). 
 

 
Fig. CM4-3.  Electron potential energies across a one-sided step junction (from Yang, Ref. 3). 
 
It is especially important to understand the properties of the forward biased n-p junction.  Fig. 
CM4-4 (from Yang) sketches the minority carrier distribution, the minority carrier currents, and 
the full electron and hole currents across the junction. 
 
Finally, one may derive the total current across the junction.  The result is sketched in Fig. CM4-
5, from Yang, of course.  The analytical expression for the current-voltage characteristic of the 
ideal n-p junction is given by (Eqs. 4-46, 4-47 in Yang): 
 

I = In(0) + Ip(0) = I0[exp(eV/kBT)-1], where 
 

I0 = eA[(Dppn0/Lp) + (Dnnp0/Ln)]. (5) 
 
This is the famous Shockley equation.  Here, Lp and Ln are the hole and electron diffusion 
lengths, Ln = (Dnτn)

1/2, etc, Dn,p are the electron and hole diffusion coefficients, and pn0 and np0 
are the minority carrier concentrations far from the junction region.  A is the area of the junction. 
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Fig. CM4-4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CM4-5 
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Solar cell performance 
 

The case of a solar cell is very similar to that of a diode except that the light generates 
electron hole pairs both in the junction region itself and in the lightly-doped or intrinsic region 
which then diffuse to the junction region.  As a result a large reverse current is generated which 
will shift the I-V curve in the negative current direction.  Thus the shape of the I-V curve will 
resemble Fig. CM4-5 but shifted along the negative current axis. 
 

Important parameters of the solar cell are Voc the open circuit voltage, Isc the short circuit 
current, and the fill factor.  The fill factor refers to the "squareness" of the I-V curve in the fourth 
quadrant.  The FF is the maximum power point of the I-V curve divided by VocIsc. 
 

FF = Pmax/VocIsc = ImVm/VocIsc. 
 
See Fig. CM4-6. 
 

Fig. CM4-6: Typical current-voltage relation for a polycrystalline CdS (n-type) / CdTe 
(p-type) heterojunction solar cell fabricated at the University of Toledo.  Measurement 
done at the National Renewable Energy Lab.  VOC=0.814 V, ISC=3.5429 mA, fill 
factor=73.25%, AM1.5 efficiency = 14.0%. 
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Note:  In Fig. CM4-5, the scale for the reverse current is much smaller than that for the forward 
current (typically μA or pA);  the apparent slope discontinuity at the origin is not real. 
 
Experiments: 
 
1. Measure the I-V characteristics of two light-emitting diodes (LEDs), one red and one 

green.   WARNING: the LEDs cannot tolerate high forward current.  Therefore, 
you should in software set the maximum current to be only 15 mA or less!   For other 
diodes, a maximum current of 100 mA or more should be OK. 

 
2. Measure the I-V curves also for two transistor diodes;  note some identifying factor, such 

as the shape, model # if there is one, or other distinguishing features so we’ll know which 
is which.  Note that for transistors, the base-emitter junction behaves like a diode, so 
that’s what you’ll measure. 

 
2. Take the dark and light I-V of two solar cells--one nanocrystalline Si cell and one CdTe 

cell fabricated (both fabricated at the U. of Toledo).  The tungsten-halogen light source 
should be adjusted for approximately one-sun intensity.  This can be done by using the 
calibrated Si solar cell placed at the position (laterally and vertically) of the sample to be 
measured, and adjusting the intensity so that the photocurrent reads as close to 24.5 mA 
as possible). 

 
Analysis: 
 
The equation given on page CM4-4 for the current-voltage relationship of an ideal diode is rarely 
met in practice.  One reason is that the introduction of dopants into a semiconductor, to obtain n-
type and p-type behavior, also introduces electron-hole recombination states which often lie 
energetically near the middle of the band gap.  Furthermore, the ideal diode equation ignores 
finite series resistance in the diode.  The result is that a realistic I-V characteristic is written as 
 
 

  
 
This equation properly accounts for a series resistance (rs) and an ideality factor (n). 
 
In the case of a solar cell, there is a large light-generated reverse current, -IL, and furthermore 
there may be significant current shunting which is modeled with a shunt resistance (rsh) so that 
the final equation for diode current in a solar cell is 
 

  
 
Note that for a simple diode, if you neglect the series resistance, you can extract the ideality 
factor by making a semilogarithmic plot of ln(I) vs. applied voltage V.  The slope of the line will 
be e/nkBT.  Refer to Fig. CM4-7 taken from Schroder p. 148. 
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For a solar cell, you can find IL from the value of current at large negative applied voltage, 
assuming that the shunt resistance is not too small.  (Actually, it is often possible to measure the 
shunt resistance from the slope of the I vs. V curve for negative voltage bias, on a linear plot.)  
Then if you plot ln(I+IL) vs. V, you can obtain the ideality factor for the solar cell. 
 
A. For the diodes (red and green LEDs, and the other transistor-based diodes), plot ln(I) vs. 

V and obtain the ideality factor, n, of the diode. (Note that the ideal diode has n=1.)  From 
the intercept at V = 0 obtain the prefactor, I0 which is the reverse saturation current. 

 
B. For the two solar cells, nc-Si and CdTe,  

-find the light-generated current, IL, 
-find the ideality factor, n  
-find the prefactor, I0, the reverse saturation current. 
 
 
 
 
 
 
 
 

Fig. CM4-7: (from Schroder) 
Log(I) vs. V for diode with  
series resistance.  The upper  
dashed line is for rs = 0. 
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Reverse saturation currents: 
Typically the temperature dependence of the diffusion coefficients, D, and lifetimes, τ, is weak 
(due to phonon scattering) and the main dependence of the I0 is on the density of holes 
(electrons) in the n-type (p-type) side.  These are exponentially sensitive to the band gap energy 
and to the temperature.  In the limit of a one-sided step junction, only one of the terms of Eq. 5 
comes in and the value of I0 is given by 
 
   I0  ~ exp(-Eg/kT). 
 
Since the temperature was ~300 K for all of your measurements, you should readily be able to 
extract the band-gap dependence of I0, the reverse saturation current.  This is the reason you have 
measured diodes constructed from several different materials. 
 
For your information, the room temperature band gaps of these materials are: 
 
 Ge:  0.66 eV 
 Si:  1.12 eV 
 GaAs:  1.424 eV 
 AlGaAs: (depends on the composition of Al) 

AlAs:  2.16 eV 
 CdTe:  1.45 eV 
 nc-Si:  ~1.2 eV 
 
 
Note: the wavelengths of the LEDs would approximate their bandgap energies.  Assume that the 
red one is about 670 nm, and that the green one is about 530 nm.  We may be able to measure 
these in an upcoming lab, but until then perhaps you can estimate the band gap from the I0…. 
 
  
 


