APPENDIX I: THE CZERNY-TURNER GEOMETRY

Both monochromators used in this laboratory (HEATH, SPEX) employ the Czerny-Turner geometry illustrated in Fig. Al-1. It is easy to show that in this case, the grating equation is

$$d(\sin\alpha + \sin\beta) = m\lambda \tag{A-1}$$

and that it can be rewritten

$$2d\cos\varphi\sin\theta = m\lambda. \tag{A-2}$$

For first order diffraction (m=1), the dispersion in angle therefore is

$$d\lambda/d\theta = (2d\cos\varphi)\cos\theta.$$
 (A-3)

The reciprocal dispersion (Å/mm) is defined as

$$R = \frac{1}{f} \frac{d\lambda}{d\beta} = \frac{1}{f} \frac{d\lambda}{d\theta}$$

and can be computed from (A-3).

For a spectrometer of focal length f, we have

 $R = d\lambda/dx = (1/f)(d\lambda/d\theta) = (1/f)(2d \cos\varphi) \cos\theta$

 $\theta = \sin^{-1}[m\lambda / 2d \cos \phi]$

For the two spectrometers employed here

	<u>HEATH</u>	<u>SPEX</u>
f =	0.35 m	1.0 m
φ =	17.5°	4.9 °
$\cos \varphi =$	0.95372	0.99634
1/d =	1180 mm⁻¹	1200 mm⁻¹.

The typical geometry for operation of a monochromator (spectrometer with entrance and exit slits), is to use equal entrance and exit slits. This introduces a factor of two so that the reciprocal linear dispersion will be (for entrance and exit slits of width x)

$$R = (1/2f)d\lambda/d\theta.$$

For reasonably small values of θ (e.g., < 20°), one can approximate $\cos \theta \cong 1$, so that the linear dispersion simplifies to R \cong d/f. This should be confirmed by your measurements, and you should express the dispersion in terms of Å/mm.

CASE 8 \$ < \$

Fig. A1-1. The Czerny-Turner geometry.