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APPENDIX VIII: Line broadening mechanisms in gases 
 
The high resolution experiments, particularly with the Fabry-Perot interferometers, provide the 
opportunity to measure the line shapes of emission lines in gases.  In fact, observing the modes of 
the HeNe laser drift through the (Gaussian) line profile of the 632.8 nm Ne transition provides an 
example of the possibility of doing "sub-Doppler" spectroscopy. 
 
There are two principal types of line broadening mechanisms in gases-Doppler and lifetime 
broadening.  Doppler is inhomogeneous and lifetime broadening is homogeneous.  There origins are 
sketched below. 
 
 
Doppler broadening originates from the Doppler shift of the moving atoms: 
 
 ν = νo(1 ± vx/c) or Δν = νo(vx/c). 
 
The velocity distribution is assumed Maxwellian: 
 
 Prob(vx) ~ exp[-E/2kT] ~ exp[-mvx

2/2kT]. 
 
Note that there is a direct proportion between the number of atoms with velocity vx and the 
probability that a photon will be emitted having the Doppler shift Δν.  Thus, 
 
 I(Δν) =Ioexp[-(Δν/νo)

2/(kT/2mc2)]. 
 
You may readily show that the full width at half maximum of this lineshape is 
 
 ΔνFWHM = 2νo [2ln2 kT/(mc2)]1/2  = νo(1.24 x 10-5)(T/300)1/2(mp/M)1/2. 
 
Thus Doppler broadening leads to Gaussian lineshapes.  Note carefully its dependence on atomic 
mass and temperature! 
 
 
Lifetime broadening is Lorentzian as the following argument shows.  Consider a sinusoidal wave 
packet with a decaying amplitude: 
 
 E(t) = Eo exp[-(Γ/2)t-iωot],   
 
[note the irradiance is just the Poynting vector of E & M:  
 
 I(t) = εoc E*(t)E(t) = εoc Eo

2 e-Γt,  
 
so that Γ is the usual decay constant Γ = τ-1]. 
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Its Fourier transform is: 
 
 E(ω) = Eo  exp[-(Γ/2)t-iωt] exp[iωt] dt, 
 
  = Eo [i(ω-ωo) + (Γ/2)]-1. 
 
Now the irradiance (intensity) as a function of frequency is 
 
 I(ω) = εoc E(ω)*E(ω) = Io/[(ω-ωo)

2 - (Γ/2)2]. 
 
Thus, the full width at half maximum for this Lorentzian line shape is readily shown to be  
 
 ΔνFWHM = Δω/2π = Γ/2π = 1/(2πτ), 
 
where τ is the lifetime associated with the radiation process. 
 
It should be noted that the lifetime broadening discussed may be the "natural" lifetime (i.e., the 
radiative decay lifetime) or also, if collisions are frequent enough, this may be the mean lifetime 
between collisions.  In this case is is possible to estimate a collision rate Γ as 
 
 Γ = nσv 
 
where n is the number density of the gas atoms, σ is a collision cross section, and v is the mean 
velocity of approach.  Of course, n = P/kT; to a first-order approximation, 
 
 σ = π(r1 + r2)

2;  and the relative speed of approach is v = (v1
2 + v2

2)1/2, 
 
where r1 and r2 are effective collision radii, and v1 and v2 are mean thermal velocities [v  
(3kT/m)1/2].  For most neutral atoms (in the ground state) the collision radii are of the order of 1.5 to 
3 Å. 
 
For example:  rHe = 1.09 Å 
   rNe = 1.30 Å 
   rAr = 1.82 Å 
   rN2 = 1.88 Å 
and   rCO2 = 2.30 Å. 


