X-ray Diffraction and Crystal Structures

Week of March 22, 2010

Modern Physics Laboratory (Physics 6180/7180)

The University of Toledo Instructor: Randy Ellingson

X-Ray Generation

X-rays are electromagnetic radiation with wavelength ~1 $\text{Å} = 10^{-10} \text{ m}$ (visible light ~5.5x10⁻⁷ m)

X-ray generation

X-ray wavelengths too short to be resolved by a standard optical grating

$$\theta = \sin^{-1} \frac{m\lambda}{d} = \sin^{-1} \frac{(1)(0.1 \text{ nm})}{3000 \text{ nm}} = 0.0019^{\circ}$$

X-Ray Generation

The most common metal used is copper, which can be kept cool easily, due to its high thermal conductivity, and which produces strong K_{α} and K_{β} lines. The K_{β} line is sometimes suppressed with a thin (~10 μ m) nickel foil.

- K-alpha (K_{α}) emission lines result when an electron transitions to the innermost "K" shell (principal quantum number 1) from a 2p orbital of the second or "L" shell (with principal quantum number 2).
- The K_{α} line is actually a doublet, with slightly different energies depending on spin-orbit interaction energy between the electron spin and the orbital momentum of the 2p orbital.

$$\lambda(K_{\alpha}) = 0.154 \text{ nm}$$

 $\lambda(K_{\beta}) = 0.139 \text{ nm}$

Atomic levels involved in copper K_{α} and K_{β} emission.

\textbf{K}_{α} and \textbf{K}_{β} X-ray lines

X-Ray diffraction

X-Ray Diffraction -- Bragg's Law

Diffraction of x-rays by crystal: spacing *d* of adjacent crystal planes on the order of 0.1 nm

→ three-dimensional diffraction grating with diffraction maxima along angles where reflections from different planes interfere constructively

2d sin
$$\theta = m\lambda$$
 for $m = 0, 1, 2, ...$

Bragg's Law

The Braggs (Bragg's Law)

Sir William Henry Bragg 1862-1942

William Lawrence Bragg 1890-1971

Bragg occupied the Cavendish chair of physics at the University of Leeds from 1909. He continued his work on X-rays with much success. He invented the X-ray spectrometer and with his son, William Lawrence Bragg, then a research student at Cambridge, founded the new science of X-ray analysis of crystal structure.

In 1915 father and son were jointly awarded the Nobel Prize in Physics for their studies, using the X-ray spectrometer, of X-ray spectra, X-ray diffraction, and of crystal structure.

X-Ray Diffraction, cont'd

Interplanar spacing d is related to the unit cell dimensaion a_0

$$5d = \sqrt{\frac{5}{4}a_0^2}$$
 or $d = \frac{a_0}{20} = 0.2236a_0$

Not only can crystals be used to separate different x-ray wavelengths, but x-rays in turn can be used to study crystals, for example determine the type of crystal ordering and a_0 .

Crystal structure, lattice planes, and Miller indices

Planes with different Miller indices in cubic crystals. The *inverse* of these fractional intercepts yields the Miller indices *h*, *k*, *l*.

from http://en.wikipedia.org/wiki/Miller_index

Crystal structure and Miller indices

Planes with different Miller indices in cubic crystals.

Crystal structure and Miller indices

http://www.msm.cam.ac.uk/doitpoms/tlplib/miller_indices/lattice_index.php

Rock salt (cubic) crystal structure

$$d_{hkl} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}}$$

Structure factor for NaCl:

$$F = \left[f_{Na} + f_{Cl} e^{i\pi(h+k+l)} \right] \left[1 + e^{i\pi(h+k)} + e^{i\pi(h+l)} + e^{i\pi(k+l)} \right]$$

$$F = 4(f_{Na} + f_{Cl})$$
 if h, k, l are even $F = 4(f_{Na} - f_{Cl})$ if h, k, l are odd $F = 0$ if h, k, l are mixed

X-Ray diffraction: a practical approach, by C. Suryanarayana, M. Grant Norton

X-Ray diffraction (XRD) pattern (diffractogram) from NaCl

Diffraction angle 2θ (degrees)

$$d_{hkl} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}}$$

LiF diffractogram (Cu K_{α})

TEL-X-Ometer

 $K_{\alpha 1}$ 1.540 Å

 $K_{\alpha 2}$ 1.544 Å

 K_{β} 1.392 Å