
# Lab #5 Current/Voltage Curves and Efficiency Measurements

R.J. Ellingson and M.J. Heben

October 22, 2013 PHYS 4580, 6280, and 7280

# Simple solar cell structure



# The Diode Equation

#### **Ideal Diode Law**

$$I = I_0 \left( e^{\frac{qV}{kT}} - 1 \right)$$

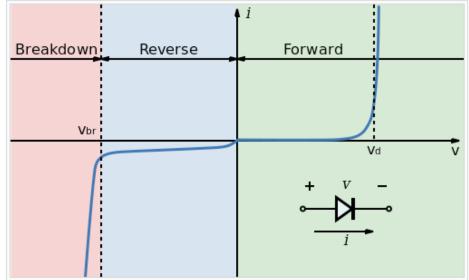
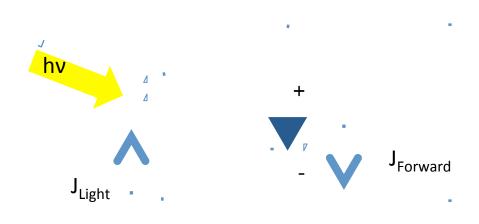



Figure 5: I–V characteristics of a p–n junction diode (not to scale—the current in the reverse region is magnified compared to the forward region, resulting in the apparent slope discontinuity at the origin; the actual I–V curve is smooth across the origin).

I = net current;

 $I_0$  = "dark saturation current", aka diode leakage current, aka reverse saturation current;

V = applied voltage across the terminals of the diode;

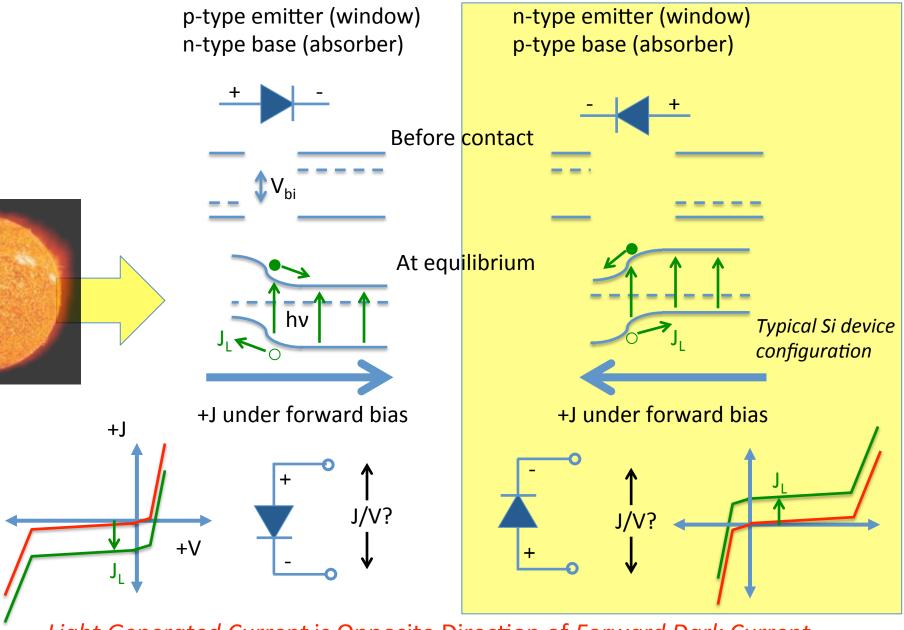

*q* = electron charge;

k = Boltzmann's constant;

T = absolute temperature (K).

 $I_0$  is a property of the junction interfaces and recombination in the device.

#### Light Generated Current is Opposite Direction of Forward Dark Current




### Principle of Superposition

$$I = I_0 \left[ \exp \left( \frac{qV}{nkT} \right) - 1 \right] - I_L$$

Where n is the diode quality factor, reflects type of recombination in the device

# Homojunction solar cell (e.g., Silicon)



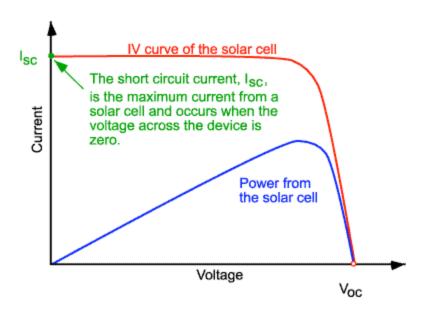
Light Generated Current is Opposite Direction of Forward Dark Current

#### **IV** Curve

- The IV curve of a solar cell is the superposition of the IV curve in the dark with a constant light-generated current  $(I_1)$ .
- The light current shift the J/V curve down so  $V_{\rm OC}$  occurs near the "turn-on knee" in the diode curve.

 $I_L$  = light generated current.

$$I = I_0 \left[ \exp \left( \frac{qV}{nkT} \right) - 1 \right] - I_L$$


Go to Animation





# Short circuit photocurrent

The short-circuit current ( $I_{SC}$ ) is the current through the solar cell when the voltage across the solar cell is zero (i.e., when the solar cell is short circuited). Usually written as  $I_{SC}$ , the short-circuit current is shown on the IV curve below.



 $I_{SC}$  is due to the generation and collection of light-generated carriers. For an ideal PV cell with moderate resistive loss,  $I_{SC}$  and the light-generated current are identical ( $I_{SC}$  is the largest current which may be drawn from the solar cell).



# Short circuit (photo)current (I<sub>SC</sub>) or current density (J<sub>SC</sub>)

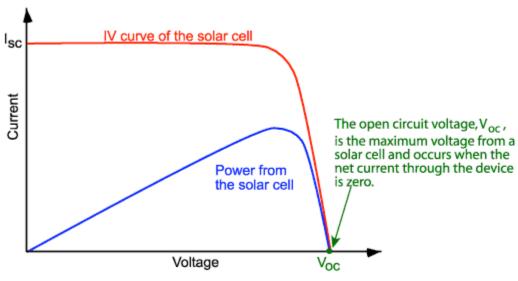
 $I_{SC}$  (or  $J_{SC}$ ) is the current (or current density) when the device leads are "shorted" (i.e., connected electrically to one another)

I<sub>SC</sub> depends on a number of factors, as follows:

the area of the solar cell. To remove the dependence of the solar cell area, it is more common to list the short-circuit current density  $(J_{sc} \text{ in } mA/cm^2)$  rather than the short-circuit current;

**the number of photons** (i.e., the power of the incident light source). Isc from a solar cell is directly dependant on the light intensity;

the spectrum of the incident light. For most solar cell measurement, the spectrum is standardised to the AM1.5 spectrum;


the optical properties (absorption and reflection) of the solar cell (discussed in Optical Losses); and

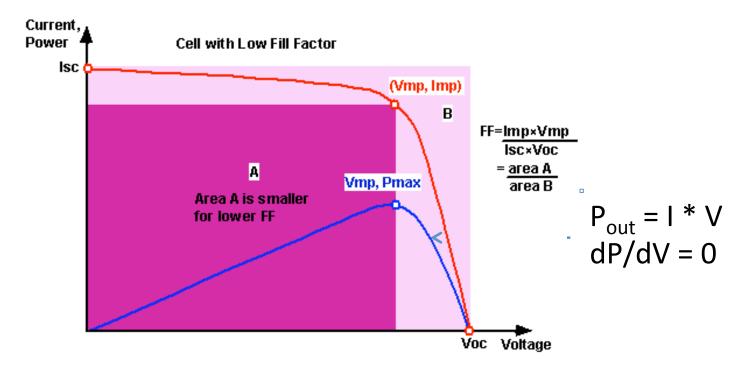
the collection probability of the solar cell, which depends chiefly on the surface passivation and the minority carrier lifetime in the absorber.



# Open circuit photovoltage (V<sub>oc</sub>)

The open-circuit voltage,  $V_{oc}$ , is the maximum voltage available from a solar cell, and this occurs at zero current. The open-circuit voltage corresponds to the amount of forward bias on the solar cell due to the bias of the solar cell junction with the lightgenerated current. The open-circuit voltage is shown on the IV curve below.




An equation for  $V_{oc}$  is found by setting the total current equal to zero, giving:

$$V_{OC} = \frac{nkT}{q} \ln \left( \frac{I_L}{I_o} + 1 \right)$$



# Solar cell fill factor (FF) and Max Power Point (mpp)

At both of the operating points corresponding to  $I_{SC}$  and  $V_{OC}$ , the power from the solar cell is zero. The "fill factor" (FF) is the parameter which, in conjunction with  $V_{oc}$  and  $I_{sc}$ , determines the maximum power from a solar cell. The FF is defined as the ratio of the maximum power from the solar cell to the product of  $V_{oc}$  and  $I_{sc}$ . Graphically, the FF is a measure of the "squareness" of the solar cell and is also the area of the largest rectangle which will fit in the IV curve. The FF is illustrated below:



Graph of cell output current (red line) and power (blue line) as function of voltage. Also shown are the cell short-circuit current ( $I_{sc}$ ) and open-circuit voltage ( $V_{oc}$ ) points, as well as the maximum power point ( $V_{mp}$ ,  $I_{mp}$ ). Click on the graph to see how the curve changes for a cell with low FF.

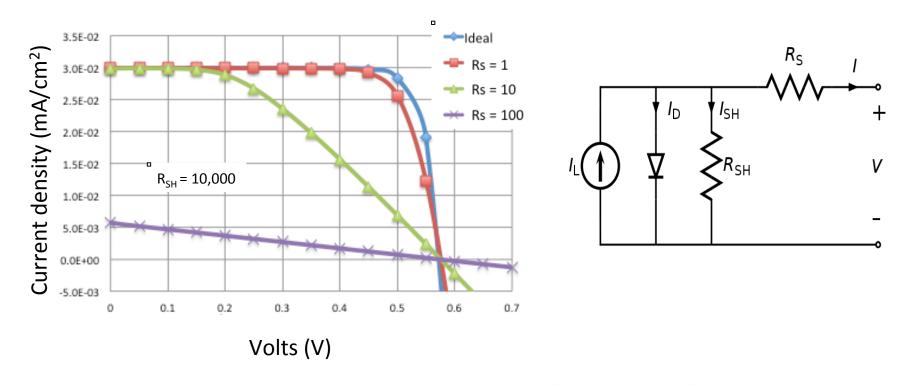


# Solar cell efficiency

The efficiency of a solar cell (sometimes known as the power conversion efficiency, or PCE, and also often abbreviated  $\eta$ ) represents the ratio where the output electrical power at the maximum power point on the IV curve is divided by the incident light power – typically using a standard AM1.5G simulated solar spectrum.

The efficiency of a solar cell is determined as the fraction of incident power which is converted to electricity and is defined as:

$$P_{\text{max}} = V_{OC}I_{SC}FF \qquad \qquad \eta = \frac{V_{OC}I_{SC}FF}{P_{inc}}$$


where  $V_{oc}$  is the open-circuit voltage; where  $I_{sc}$  is the short-circuit current; and where FF is the fill factor where  $\eta$  is the efficiency.

Power in AM1.5G spectrum is 1kW/m<sup>2</sup>, or 100 mW/cm<sup>2</sup>

For a  $10 \times 10 \text{ cm}^2$  cell, the input power (AM1.5G) is  $100 \text{ mW/cm}^2 \times 100 \text{ cm}^2 = 10 \text{ W}$ .



# Impact of Electrical Loss Due to High Series Resistance (R<sub>S</sub>) PV cells



Diode equation with R<sub>S</sub> and R<sub>SH</sub>: 
$$I = I_L - I_0 \exp \left[ \frac{q(V + IR_S)}{nkT} \right] - \frac{V + IR_S}{R_{SH}}$$