Absorption coefficients of semiconductor thin films

October 8, 2013

PHYS 4580, PHYS 6/7280 The University of Toledo Profs. R. Ellingson and M. Heben

Typical Si PV Cell Structure

Typical Thin Film (CIGS) Cell Structure

Schematic cross section of a typical Cu(InGa)Se₂ solar cell

Conservation of Energy for each wavelength Total Incident $(\lambda) = A(\lambda) + T(\lambda) + R(\lambda)$

Why must some PV layers be so thick? (want to maximize absorption)

Mechanisms of Optical Absorption

- Energy is absorbed by a "system", potential energy of system is increased.
- For a system in which we are concerned with gravitational potential energy, consider the energy required to put put a book on a shelf.
- For semiconductors, optical absorption occurs any time a "carrier" can be excited to a higher "state".
- Typically, the carriers we are concerned with are electrons, and the excitation is across the band gap.

Absorption coefficient

(a connection between the optical and electronic properties of materials)

$$\alpha(\lambda) \propto n_i(\lambda) P_{if}(\lambda) n_f(\lambda)$$

- α (λ) the absorption coefficient
- $n_i(\lambda)$ density of carriers in an initial state
- $n_f(\lambda)$ density of unoccupied states
- $P_{if}(\lambda)$ probability that transition will take place

In addition to "band gap excitation", another important absorption process is "free carrier absorption", which is typically seen in metals and TCOs.

Types of Semiconductor Band Gaps

- A direct transition requires just a photon of sufficient energy
- An indirect transition require both a photon and a phonon "two body event" is lower probability.
- Energy and Momentum must be conserved.

Density of States in 3D Crystal

- "States" allowed solutions to the Shrodinger Equation
- Analogy to waves on a string, but in 3 dimensions

 $\alpha(hv) \propto n_i(hv) P_{if}(hv) n_f(hv)$ $DOS \propto E^{1/2}$ $\alpha(hv) \propto E_i^{1/2} P_{if} E_f^{1/2}$ $\alpha(hv) \propto \Delta E^{1/2}$ $\Delta E = hv - E_g$ $\alpha(hv) \propto \left(hv - E_g\right)^{1/2}$

Absorption Coefficients for some Semiconductors

95% Absorption Depth (CdTe)

Calculation of the absorption coefficient, $\alpha(\lambda)$, for a thin film

$$T = \frac{I_t}{I_{total}} \qquad I_t = I_0 e^{-\alpha(\lambda)d} \qquad I_0 = I_{total} (1-R)$$

 $I_{t} = I_{total} (1 - R) e^{-\alpha(\lambda)d}$

Since $I_t = (T)(I_{total}) \rightarrow (T)(I_{total}) = (1-R)(I_{total})e^{-\alpha(\lambda)d}$

$$e^{-\alpha(\lambda)d} = \frac{T}{1-R} \Longrightarrow \alpha(\lambda)d = -\ln\left(\frac{T}{1-R}\right) \qquad \qquad \alpha(\lambda) = \frac{-\ln\left(\frac{T(\lambda)}{1-R(\lambda)}\right)}{d}$$

Measuring the bandgap energy (optical absorption)

$$I(\lambda) = I_0(\lambda) e^{-\alpha(\lambda)x} \quad \blacksquare \quad I(E) = I_0(E) e^{-\alpha(E)x}$$

Direct-gap semiconductor

 $\alpha(E) = \alpha_0 \left(E - E_g \right)^{\frac{1}{2}}$

Indirect-gap semiconductor

$$\alpha(E) \propto \left(E - E_g\right)^2$$

 Fe_2O_3 , (haematite) – direct or indirect gap?

Semicond. Sci. Technol. **20** No 8 (August 2005) 705-709 doi:10.1088/0268-1242/20/8/009 Nanocrystalline haematite thin films by chemical solution spray J D Desai, H M Pathan, Sun-Ki Min, Kwang-Deog Jung and Oh-Shim Joo

.... energizing Ohio for the 21st Century

Measuring the bandgap energy (optical absorption)

Direct-gap semiconductor

$$\alpha(E) = \alpha_0 \left(E - E_g \right)^{\frac{1}{2}}$$

		Egr	eV	_		E _{gn} eV		
Crystal	Gap	0 K	300 K	Crystal	Gap	0 K	300 K	
Diamond	i	5.4		HgTe ^a	d	-0.30		
Si	i	1.17	1.14	PbS	d	0.286	0.34-0.37	
Ge	i	0.744	0.67	PbSe	d	0.165	0.27	
αSn	d	0.00	0.00	PbTe	d	0.190	0.30	
InSb	d	0.24	0.18	CdS	d	2.582	2.42	
InAs	d	043	0.35	CdSe	d	1.840	1.74	
InP	d	1.42	1.35	CdTe	d	1.607	1.45	
GaP	i	2.32	2.26	ZnO		3.436	3.2	
GaAs	d	1.52	1.43	ZnS		3.91	3.6	
GaSb	d	0.81	0.78	SnTe	d	0.3	0.18	
AlSb	i	1.65	1.52	AgCl		-	3.2	
SiC(hex)		3.0	-	AgI		-	2.8	
Ťe	d	0.33	-	Cu2O		2.172	-	
ZnSb		0.56	0.56	TiO ₂		3.03	-	

"HgTe is a semimetal; the bands overlap.

General references: D. Long, Energy bands in semiconductors. Interscience, 1968; also the A.I.P. Handbook, 3rd ed., Sec. 9.

See, for example, http://engr.sjsu.edu/cme/MatELabs/MatE153/Ch7%20Optical%20 Absorption.pdf, or http://engphys.mcmaster.ca/undergraduate/outlines/3pn4/LAB3P N4-2%20Jan08.pdf Indirect-gap semiconductor

$$\alpha(E) \propto \left(E - E_g\right)^2$$

Indirect gap: plotting α vs E shows an E² dependence, so plotting $\alpha^{1/2}$ shows a linear dependence.

Direct gap: Plotting α vs E shows an E^{1/2} dependence, so plotting α^2 shows a linear dependence.

Measuring the bandgap of a thin film (optically)

Therefore, if a plot of hv versus α^2 forms a straight line, it can normally be inferred that there is a direct band gap, measurable by extrapolating the straight line to the $\alpha = 0$ axis. On the other hand, if a plot of hv versus $\alpha^{1/2}$ forms a straight line, it can normally be inferred that there is an indirect band gap, measurable by extrapolating the straight line to the $\alpha = 0$ axis. From http://en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

.... energizing Ohio for the 21st Century

		Ener	gy gap	Lowest conduction- band minimum, direct or indirect	$\int_{0}^{1-} \left(\frac{dE_g}{dT}\right) \times \frac{10^4}{(300^\circ \text{K})} \\ e \text{V/}^\circ \text{K}$	$\left(\frac{dE_g}{dP}\right)_T \times 10^6$ eV/bar	Effective mass				Lattice	Mobility	
		Es (0°K) eV	Eg (300°K) eV				m*,	m#	Refractive index n	Static dielectric constant ϵ	constant a Å	μ _e cm²/ V•sec	μ _h cm ² / V-sec
	Si	1.166	1.11	ind 100	-2.3	-1.5	$m_l 0.98 \\ m_l 0.19$	0.52	3.44	11.7	5.43	1,350	480
1	Ge	0.74	0.67	ind 111	-3.7	5.0	m ₁ 1.58 m ₁ 0.08	0.3	4.00	16.3	5.66	3,900	1,900
	la-Sn	-0.2‡		dir 000		5.0	0.02				6.489	2.000	1.000
IV-I	v sic $\begin{cases} \alpha \\ \end{cases}$	3.0 (6H)	2.8-3.2†	ind	-3.3				2.69 // c 2.65 1 c	10.2	a 3.0817 c 15.1123	400	
	(B	2.68	2.2	ind							4.359		
1	Se	1.95	1.74	dir 0001	-14	- 20		0.12	5.56∦c 3.72⊥c	8.5		1	
	Te	0.334	0.32	dir 0001	-0.3	-19	0.038 _⊥	0.26 # 0.10 ±	3.07∥c 2.68⊥c	5.0∦c 2.2⊥c		1,100	
			-				1		2.6	6.9	4.538	1	
AIP	BP		2	ind	2.6		0.12+		3.0	9.8	5.462	80	
	AIP	2.5	2.43	ind 100	-3.5		0.5	mi 1.06	510	12	5.66	1,000	~100
- 1			-1.0	1.4.100		16	0.11	0.39	3.4	11	6.135	50	400
AISb GaN GaP GaAs GaSb InP InAs InSb	AISb GaN	1.6	3.4	dir 0000	-4.8	4.2	0.2	0.8	2.4	12	a 3.18 c 5.16	300	
	Gard	2.5	0.00	104 100	5.4	17	0.13	0.678	3.37	10	5.450	120	120
	GaP	2.4	2.25	100 100	-3.4	-1.7	0.07	0.5	3.4	12	5.653	8,600	400
	GaAs	1.520	1.43	dir 000	- 3.0	12	0.045	0.39	3.9	15	6.095	4,000	650
	GaSb	0.81	0.69	dir 000	-4.1	4.6	0.07	0.40	3.37	12.1	5.8687	4,000	000
	InP	1.42	0.26	dir 000	- 13		0.028	0.33	3.42	12.5	6.058	30,000	Z41
	InAs	0.43	0.36	dir 000	-2.9	15	0.0133	0.18	3.75	18	6.4787	76,000	(78°K
	700		3.2	dir 0000	-9.5	0.6	0.32	0.27	2.02	7.9	a 3.2496 c 5.2065	180	
	Lino		3.8	dir 0000	- 3.8	9	0.28	>1 /	2.4	8.3	g 3.814 c 6.257		
ZnS { ZnSe ZnTe II-VI CdS CdSe	ZnS {"		- 2.6	2:- 000	51	57	0.39		2.4	8.3	5.406		-
	LB		3.0	dir 000	-12	6	0.17		2.89	8.1	5.667	100	-
	ZnSe	2.80	2.38	dir 000	-5	6	0.15		3.56	9.7	6.101		1 /
	ZnTe	2.58	2.53	dir 0000	-5	3.3	0.20	0.7⊥c 5 ∦c	2.5	8.9	a 4.136 c 6.713	210	-
	CdSe	1.85	1.74	dir 0000	-4.6		0.13	2.5∦‡ 0.4⊥		10.6	a 4.299 c 7.010	500	-
	C.IT.	1.60	1.50	dir 000	-41	1.5	0.11	0.35	2.75	10.9	6.477	600	
	Cale	1.00	25	011 000						-	6 402	5 500	+
	HeSe	- 0.24	-0.15	dar 000			0.045			25	6.085	3,300	100
Pt	HgTe	-0.28	-0.15	dir 000	+ 5.6		0.029	~0.3	3.7	20	6.42	22,000	(20°K
	The	0.29	0.37	dir 111	+4	-7	0.1	0.1	3.7	170	2.930	530	000
	PbSe	0.15	0.26	dir 111	+4	-8	m1 0.07 m1 0.039	m1 0.06 m1 0.03		250	6.124	1,020	930
V-VI	PbTe	0.19	0.29	dir 111	+4	-9	m ₁ 0.24 m ₁ 0.02	m; 0.3 m; 0.02	3.8	412	6.460	1,620	750
		0.1	0.18	dir 111				and a state of the state of the		-	0.328		

Reproduced From "Optical Processes in Semiconductors", Pankove