Lab #3
Transparent Conductors:
Transparency, Conductivity, and Film Thickness

R.J. Ellingson and M.J. Heben

Sept. 23, 2013
PHYS 4580, 6/7280
Lab Reports

• Annotate your graphs to point out interesting features (the peak, any anomalies, etc.).
Lab Reports (cont.)

• Do not include LV BD or FP unless you’re showing an especially creative feature that leads to better data.

• Comparing the spectra resulting from the “direct” measurement to the LIA measurement, the test is not the signal amplitude measured on the USB-6009 – the test is SNR. For this purpose, normalized data is helpful to observe the quality of the data.

 • How “good” is my signal? The Sensitivity setting on the LIA determines the output voltage measured by the DAQ; therefore, the final “signal amplitude” does not indicate the quality of the signal.

 • How can you determine a Signal-to-Noise Ratio (SNR)? Look at the signal at a specific wavelength, make a sequence of measurements, and calculate the ratio of the (standard deviation)/(mean signal).

 • Comparing SNR for “direct” vs. “LIA” methods would give you a measure of which measurement technique results in lower noise.
Lab Reports (cont.)

• Nobody mentioned the influence of the reflectivity of the aluminum mirrors on the measured spectrum.

![Typical Aluminum Spectral Profile](image)

• Read through your report, out loud to yourself, to check the quality of the writing. Does it sound fluid and correct? If not, then edit until it reads well (until it is well-written).
Lab Reports (cont.)

- Plagiarism is not OK – this has now proven to be a big problem based on my observations. In general, you should read the literature/source, understand it, and then express the ideas in your own words. In many cases, even when you have reformed the ideas into your own words, you should still cite your source as a reference. If you must cite an original source word for word (i.e., and exact quotation from the source), here’s the correct way to cite your source.

“A halogen lamp, also known as a tungsten halogen lamp or quartz iodine lamp, is an incandescent lamp that has a small amount of a halogen such as iodine or bromine added. The combination of the halogen gas and the tungsten filament produces a halogen cycle chemical reaction which redeposits evaporated tungsten back onto the filament, increasing its life and maintaining the clarity of the envelope.”¹

References

TC layer: transmit light into the semiconducting layers, and transport charge out of the device.

From: Transparent conducting oxides for advanced photovoltaic applications by John D. Perkins & David S. Ginley, National Renewable Energy Laboratory, Golden, Colorado, USA. This paper first appeared in the third print edition of Photovoltaics International journal.
Typical Reflection, Transmission, and Absorption Data

From: Perkins and Ginley
Total Incident (λ) = $A(\lambda) + T(\lambda) + R(\lambda)$

1 = $A(\lambda) + T(\lambda) + R(\lambda)$

- Express Transmission, Reflection, and Absorption as values from 0 to 1: $0 \leq T \leq 1$, $0 \leq R \leq 1$, $0 \leq A \leq 1$.
For your reflectance measurements, note that the dispersion of glass between 300-1500 nm is not that large.

The phase velocity of light, $v = c/n$, varies with λ when the refractive index n is a function of λ: $n = n(\lambda)$. For glass, $1 < n(\lambda_{\text{red}}) < n(\lambda_{\text{yellow}}) < n(\lambda_{\text{blue}})$.

Reflectance Measurements
Dispersion defined by Sellmeier equation

\[n^2(\lambda) = 1 + \frac{B_1 \lambda^2}{\lambda^2 - C_1} + \frac{B_2 \lambda^2}{\lambda^2 - C_2} + \frac{B_3 \lambda^2}{\lambda^2 - C_3} \]

Example: the coefficients for a common borosilicate crown glass known as BK7 are shown below:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁</td>
<td>1.03961212</td>
</tr>
<tr>
<td>B₂</td>
<td>0.231792344</td>
</tr>
<tr>
<td>B₃</td>
<td>1.01046945</td>
</tr>
<tr>
<td>C₁</td>
<td>6.00069867×10⁻³ μm²</td>
</tr>
<tr>
<td>C₂</td>
<td>2.00179144×10⁻² μm²</td>
</tr>
<tr>
<td>C₃</td>
<td>1.03560653×10² μm²</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/Sellmeier_equation
Fresnel Coefficients

\[R_s = \left| \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} \right|^2 = \left(\frac{n_1 \cos \theta_i - n_2 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2}}{n_1 \cos \theta_i + n_2 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2}} \right)^2 \]

\[R_p = \left| \frac{n_1 \cos \theta_t - n_2 \cos \theta_i}{n_1 \cos \theta_t + n_2 \cos \theta_i} \right|^2 = \left(\frac{n_1 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2} - n_2 \cos \theta_t}{n_1 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2} + n_2 \cos \theta_t} \right)^2 \]

http://en.wikipedia.org/wiki/Fresnel_equations
Fresnel Coefficients

\[R_s = \left(\frac{n_1 \cos \theta_1 - n_2 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_1} \right)^2 = \frac{n_1 \cos \theta_1 - n_2 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_1 \right)^2}}{n_1 \cos \theta_1 + n_2 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_1 \right)^2}} \]

\[R_p = \left(\frac{n_1 \cos \theta_1 - n_2 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_1} \right)^2 = \frac{n_1 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_1 \right)^2} - n_2 \cos \theta_1}{n_1 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_1 \right)^2} + n_2 \cos \theta_1} \]

Look at dispersion: for our wavelength range, n varies from 1.55 to 1.50. At normal incidence:

For \(n_1 = 1.0 \) and \(n_2 = 1.55 \), \(R = 0.046 \).

For \(n_1 = 1.0 \) and \(n_2 = 1.50 \), \(R = 0.040 \).

\(R \) does not vary rapidly around normal incidence (\(\theta_i = 0 \)); therefore, we can expect that \(R \) varies only slightly and is \(\sim 4.0\% \) per air/glass interface. How many interfaces do we have for the blank glass slide?
Different kinds of TEC products

TEC Glass™ portfolio

TEC 7
Offers the lowest resistivity value in the TEC Glass™ range. Combined with relatively low haze, it can be used for a wide range of applications including dye solar cells, electromagnetic shielding and thin film photovoltaics.

TEC 8
Designed for use specifically with amorphous silicon thin film photovoltaics. This product combines the low resistivity of **TEC 7** with a high haze coating required for good conversion efficiencies of amorphous silicon modules.

TEC 15
The best choice for applications requiring passive condensation control and thermal performance with low emissivity and clear color-neutral appearance.

TEC 35
For use in heated glass applications, this product combines thermal control with superior electro-optical properties.

http://www.cytodiagnostics.com
Thin metal films can also be transparent

“The sheet resistance values corresponding to the 2, 3.1, 4.5 and 8 nm thick films are 5×10^3, 1.6×10^3, 4×10^2 and 1×10^2 Ω/□, respectively.”
Sheet Resistance – importance of film morphology

Scanning Electron Microscope (SEM) image of ~15 nm thick Au deposited by thermal evaporation.
Sheet Resistance

Regular 3-D conductor, resistance R is:

$$R = \rho \frac{L}{A} = \rho \frac{L}{Wt}$$

where ρ is the resistivity ($\Omega \cdot m$), A is the cross-section area, and L is the length. For A in terms of W and t,

$$R = \frac{\rho}{t} \frac{L}{W} = R_s \frac{L}{W}$$

where R_s is the Sheet Resistance. Units are ohms, but can also express this as “ohms per square”, or Ω/\square, or Ω/sq.

- A square sheet with an R_s of 100 Ω/\square has a resistance of 100 Ω (regardless of the size of the square).
Four point probe: Theory (bulk sample)

For a bulk sample (thickness $t >> s$, where s is the probe spacing), a spherical current from the outer probe tips is assumed:

Differential resistance given by: $\Delta R = \rho \left(\frac{dx}{A} \right)$

where ρ is the resistivity, dx is the differential length, and A is the surface area penetrated by the current from one probe.

To determine the resistance between the voltage measurement tips, one integrates between x_1 and x_2:

$$R = \int_{x_1}^{x_2} \rho \frac{dx}{2\pi x^2} = \rho \left(\frac{-1}{x} \right) \bigg|_{x_1}^{x_2} = \frac{1}{2s} \frac{\rho}{2\pi}$$

Superposition of current at outer two tips leads to $R = \frac{V}{2I}$, so that $\frac{V}{2I} = \frac{\rho}{(4s\pi)} \Rightarrow \rho = 2\pi s \frac{V}{I}$
Four point probe: Theory (thin sheet)

For a thin film sample (thickness $t << s$), we have the case of current rings, so that $A = 2\pi xt$.

\[
R = \int_{x_1}^{x_2} \frac{dx}{2\pi xt} = \int_s^{2s} \frac{dx}{2\pi xt} = \frac{\rho}{2\pi t} (\ln x)_{s}^{2s} = \frac{\rho}{2\pi t} \ln 2
\]

As before, superposition of current at outer two tips leads to $R = V/2I$, so that the resistivity for a thin film sample is:

\[
\rho = \frac{\pi t}{\ln 2} \left(\frac{V}{I} \right)
\]

Note that this expression is not dependent on s. **Sheet Resistance** is defined as:

\[
R_s = \frac{\rho}{t} = k \left(\frac{V}{I} \right) \quad k \text{ is a geometric factor, which for a semi-infinite thin film is } \pi/\ln 2 = 4.53
\]

http://www.fourpointprobes.com/four-point_probe.html
Contact (Stylus) Profilometry

Contact profilometer. A diamond stylus moves vertically into contact with a sample and then moves laterally across the sample for a specified distance and specified contact force. A profilometer measures small surface variations in vertical stylus displacement as a function of position. A typical profilometer can measure small vertical features ranging in height from 10 nm to 1 mm. The height position of the diamond stylus generates an analog signal which is converted into a digital signal stored, analyzed and displayed.

Advantages of contact profilometers:

- **Acceptance:** Most surface finish standards based on contact profilometers;
- **Surface Independence:** Surface contacting often an advantage in dirty environments (non-contact methods may measure surface contaminants);
- **Resolution:** Stylus tip radius can be as small as 20 nm, significantly better than white-light optical profiling. Vertical resolution is typically sub-nanometer as well.