A. Experimental Practices, andB. Graphing and Analysis with Igor Pro

Week of Aug. 29, 2011

IGOR Pro

- Runs on Mac OS X and Windows
- Fast Display of Large Data Sets
- Interactive Data Exploration
- Journal–Quality Graphics
- Powerful Curve Fitting
- Extensive Data Analysis & Statistics
- Image Processing
- Data Acquisition Support
- Built-In Programming Environment Supports Analysis and Automation
- Customizable User Interface
- Used by Scientists and Engineers Worldwide Since 1989

Molecular and Condensed Matter Lab (Physics 4580) PV Materials and Device Physics Lab (PHYS 6/7280) The University of Toledo Instructors: Randy Ellingson, Mike Heben

Experimental Methods and Practices

http://en.wikipedia.org/wiki/Scientific_method

Experimental Methods and Practices

From sciencebuddies.org:

Key Info

The scientific method is a way to ask and answer scientific questions by making observations and doing experiments.

The steps of the scientific method are to:

- Ask a Question
- Do Background Research
- Construct a Hypothesis
- Test Your Hypothesis by Doing an Experiment
- Analyze Your Data and Draw a Conclusion
- Communicate Your Results

It is important for your experiment to be a fair test. A "fair test" occurs when you change only one factor (variable) and keep all other conditions the same.

http://www.sciencebuddies.org/science-fair-projects/project_scientific_method.shtml

Key Elements of the Scientific Method

- 1. Define the question
- 2. Gather information and resources (observe)
- 3. Form hypothesis
- 4. Perform experiment and collect data
- 5. Analyze data
- 6. Interpret data and draw conclusions that serve as a starting point for new hypothesis
- 7. Publish results
- 8. Retest (frequently done by other scientists)

The iterative cycle inherent in this step-by-step methodology goes from point 3 to 6 back to 3 again.

Thoughts on the Scientific Method

Ibn al-Haytham (Alhazen, 965–1039), pointed out the emphasis on seeking truth:

Truth is sought for its own sake. And those who are engaged upon the quest for anything for its own sake are not interested in other things. Finding the truth is difficult, and the road to it is rough.

According to William Whewell (1794–1866), "invention, sagacity, genius" are required at every step in scientific method. It is not enough to base scientific method on experience alone; multiple steps are needed in scientific method, ranging from our experience to our imagination, back and forth.

http://en.wikipedia.org/wiki/Scientific_method

Scientific Method: Beliefs and Biases

Eadweard Muybridge's (1830 – 1904) studies of a horse galloping

The Epsom Derby (1821) by Géricault, Jean Louis Théodore. Oil on canvas.

http://en.wikipedia.org/wiki/Scientific_method

Igor Pro 6.1

Ready

Igor Pro 6.1 (www.wavemetrics.com)

Igor Pro 6.10A		
<u>File Edit Data A</u>	nalysis <u>M</u> acros <u>W</u> indows <u>T</u> able Misc <u>H</u> elp	
Table0:	Getting Started.ihf	
Unused	<u>Getting Started</u>	<u>^</u>
0	This help file contains overview and guided tour material and constitutes an essential introduction to Igor Pro. The main sections are:	
	Introduction to Igor Pro	
	Guided Tour 1 - General Tour	
	Guided Tour 2 - Data Analysis	
	Guided Tour 3 - Histograms and Curve Fitting	
	We strongly recommend that you read at least the first two sections.	
	The material in this help file is duplicated in Volume I of the Igor Pro PDF manual which is accessible through the Help menu.	
•	Introduction to Igor Pro	
	Igor is an integrated program for visualizing, analyzing, transforming and presenting experimental data.	
	Igor's features include:	
	Publication-quality graphics	
	High-speed data display	
	Ability to handle large data sets	
	Curve-fitting, Fourier transforms, smoothing, statistics and other data analysis	
	Waveform arithmetic	
	Image display and processing	
	Combination graphical and command-line user interface	
	 Automation and data processing via a built-in programming environment 	
Untitled	Extensibility through modules written in the C and C++ languages	
	Some people use Igor simply to produce high-quality, finely-tuned scientific graphics. Others use Igor as an all-purpose workhorse to acquire, analyze and present experimental data using its built-in programming environment. We have tried to write the Igor program and this manual to fulfill the needs of the entire range of Igor users.	
	E P Find Search GoBack <	
Ready		
Tieduy		

Error handling and propagation

- See handout (to be emailed)
- See also: http://teacher.pas.rochester.edu/PHY_LABS/AppendixB/AppendixB.html

Error (uncertainty) analysis

$$z = f(x, y)$$

For uncorrelated errors:

$$\Delta z = \left[\left(\frac{\partial f(x, y)}{\partial x} \Delta x \right)^2 + \left(\frac{\partial f(x, y)}{\partial y} \Delta y \right)^2 \right]^{\frac{1}{2}}$$

Error (uncertainty) analysis – example using Activity of ²⁴¹Am source

Where *C* is count rate, *r* is the distance to the detector, and *s* is the radius of the detector.

$$\Delta A = \frac{\partial}{\partial C} \left(\frac{4Cr^2}{s^2} \right) \Delta C + \frac{\partial}{\partial r} \left(\frac{4Cr^2}{s^2} \right) \Delta r$$
$$\Delta A = \frac{4r^2}{s^2} \Delta C + \left(\frac{4C}{s^2} \right) (2r) \Delta r$$

In quadrature, if these errors are uncorrelated:

$$\Delta A = \left[\left(\frac{4r^2}{s^2} \Delta C \right)^2 + \left(\frac{8Cr}{s^2} \Delta r \right)^2 \right]^{\frac{1}{2}}$$

Error (uncertainty) analysis – multiple value r.m.s. approach

Another approach to evaluating the uncertainty relies on a straightforward calculation of the root mean square and the standard deviation. In the case of your Activity measurements, you could compute the RMS value as well as the SD. You should still assess your uncertainty through error propagation, as the uncertainty may very well exceed the SD.

Definition of the root mean square from Wikipedia:

"...the <u>square root</u> of the <u>arithmetic mean</u> (<u>average</u>) of the <u>squares</u> of the original values..."

In the case of a set of *n* values x_1, x_2, \dots, x_n , the RMS value is given by:

$$x_{rms} = \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}}$$

The **standard deviation** is given as follows, where there are *N* values and μ is the arithmetic mean:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

LabVIEW Introduction

Adapted from a presentation prepared by Imran Haider Malik of McGill University, Canada January 16, 2006 for their Measurement Lab. MECH262-MECH261 http://www.cim.mcgill.ca/~paul/LabviewTut.pdf

Outline

- Introduction
- LabVIEW Introduction
- Data Acquisition (DAQ)
- Features of LabVIEW
- Example .vi
- LabVIEW Interface
- Lab Equipment
- Goals of this UT LabVIEW Lab
- List of Typical Measurements
- Conclusions.

LabVIEW

- Product of National Instruments (NI)
- Software for Virtual Instrumentation (.vi)
- Data Acquisition (DAQ)
- Graphical Programming
- Data Storage and Analysis for wide range of applications

Data Acquisition (DAQ)

Time dependent Signal Recording (Acquisition)

Components of DAQ:

- Physical value typically converted to voltage
- Signal conditioning (e.g., a filter nowadays can be built-in with DAQ card)
- DAQ Card (can be USB)
- DAQ Software (DAQmx, LabVIEW)

Features of LabVIEW

- Design
 - Signal and Image Processing
 - Embedded System Programming
 - (PC, DSP, FPGA, Microcontroller)
 - Simulation and Prototyping
 - And more...
- Control
 - Automatic Controls and Dynamic Systems
 - Mechatronics and Robotics
 - And more...
- Measurements
 - Circuits and Electronics
 - Measurements and Instrumentation
 - And more...

Example

🔛 Exercise 2 - Acquire (Track A).vi Front Panel

Sound Signal Acquisition

LabVIEW Interface

Each Virtual Instrument (VI) has 2

Windows

Front Panel

- User Interface (UI)
 - Controls = Inputs
 - Indicators = Outputs

Block Diagram

- Graphical Code
 - Data travels on wires from controls through functions to indicators
 - Blocks execute by Dataflow

Front Panel

Block Diagram

- Help»Show Context Help, press the <Ctrl+H> keys
- Hover cursor over object to update window

Additional Help

- Right-Click on the VI icon and choose Help, or
- Choose "<u>Detailed Help</u>."
 on the context help window

Functions (and Structures) Palette

Tools Palette

X I

 Tools to operate and modify both front panel and block diagram objects

Automatic Selection Tool

Automatically chooses among the following tools:

Status Toolbar

수 🕹 🔘 🛙	13pt Application Font	-	 -0	₩ •	¢)-
Run	Button				

5	Run Button
₽ 🕹	Continuous Run Button
	Abort Execution

Additional Buttons on the Diagram Toolbar

Lab. Equipment

• Oscilloscope

Universal Measuring Instruments

Function Generator

Signal Generator

• Digital Voltmeter (DVM)

Goals of this week's Lab

- Introduce LabVIEW
- Experience DAQ
- Use of Electronic instruments:

Oscilloscope, Function Generator Digital Volt-meter (DVM).

Measurement Examples

- 1. Instrumentation Overview.
- 2. Introduction to LabVIEW.
- 3. Data Sampling.
- 4. Time Constant.
- 5. Stress and Strain.
- 6. Transducer Sensitivity (Part 1)
- 7. Transducer Sensitivity (Part 2) and Linearity
- 8. Pressure Transducer Calibration and Jet Profile
- 9. Thermocouples: Calibration and Manufacturing

What you should know about LabVIEW being a physicist

- Selection of DAQ system for an application
- Communicating with instruments (drivers, GPIB, other)
- Modularity of programming approaches: making your .vi's flexible and adaptable

References

• <u>www.ni.com</u>

 Using the oscilloscope <u>http://www.doctronics.co.uk/scope.htm</u>