Nanostructured Semiconductor Crystals --Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects

April 1,2014 The University of Toledo, Department of Physics and Astronomy

Principles and Varieties of Solar Energy (PHYS 4400)

Quantum confinement effect

Quantum confinement effect (2)

Particle in a box (quantum well)

The Potential, V(x), is 0 inside the box, and infinite elsewhere (infinite barriers)

Nanomaterials for solar energy conversion

- Enable high surface area devices \rightarrow
 - strong light absorption (dye-sensitized nanostructured TiO_2)
 - facilitates fast charge separation (proximity of photoexcited carriers to charge-separating interface)
- Customizable properties enable unique designs \rightarrow
 - Engineerable (size-dependent) absorption spectrum
 - Varying geometries e.g., efficient charge transport in quantum rods, nanotubes
 - Controlled chemical functionalization to direct charge separation
- Efficient multiple exciton generation

Consequences of Quantization

- Dramatic variation of optical and electronic properties
- Large blue shift of absorption edge
- Discrete energy levels/structured absorption and photoluminescence spectra
- Enhanced photoredox properties for photogenerated electrons and holes
- Enhanced Inverse Auger (impact ionization, or multiple exciton generation)
- Slowed relaxation and cooling of photogenerated hot electrons and holes (controversial)

- PL blinking in single QDs
- Conversion of indirect semiconductors to direct semiconductors or vice versa
- Greatly enhanced non-linear optical properties
- Greatly modified pressure dependence of phase changes and direct to indirect transitions
- Efficient anti-Stokes luminescence

Size-dependent optical properties

http://nanocluster.mit.edu/research.php

Absorption and emission (CdSe nanocrystals)

http://en.wikipedia.org/wiki/File:EF_605_spectra.png

Size-dependent bandgap of CdSe NCs

From "Physical and Optical Properties of Colloidal Semiconducting Nanocrystals for Solar Absorption", by Abdel Ibdah (UT)

Colloidal nanostructures (crystalline)

http://talapinlab.uchicago.edu

Quantum Confined Structures – Density of States

The number of states between k and k + dk in 3, 2, and 1 dimensions:

$$\frac{dN_{3D}}{dk} = 2\left(\frac{L}{2\pi}\right)^3 4\pi k^2, \ \frac{dN_{2D}}{dk} = 2\left(\frac{L}{2\pi}\right)^2 2\pi k, \ \frac{dN_{1D}}{dk} = 2\left(\frac{L}{2\pi}\right)$$

$$g_{c,3D} = \frac{8\pi\sqrt{2}}{h^3} m_{eff}^{3/2} \sqrt{E - E_{\min}}$$

$$g_{c,2D} = \frac{4\pi m_{eff}}{h^2}$$

$$g_{c,1D} = \sqrt{\frac{2\pi m_{eff}}{h^2}} \frac{1}{\sqrt{E - E_{\min}}}$$

Quantum confinement effect on density of electronic states

Quantum Films vs Quantum Dots

phonon bottleneck

Transmission electron micrograph (TEM) of Lead Selenide NCs

Synthesis of colloidal nanocrystals

Typical three-headed flask set up. The middle head is connected to the Schlenk line's glass manifold. The left head is covered with a septum pierced by the thermocouple. The right head is for injection. Photo and caption courtesy of T. Kinner (UT).

Why pursue QD solar cells?

- 1. Colloidal synthesis produces high-quality nanocrystals
- 2. Solution processed, tunable band-gap
- 3. Potentially easy to process (room temperature, ambient air)
- 4. Scientifically interesting: balance quantum confinement w/ transport
- 5. Flexibility (?)

AM1.5G solar spectrum along with some common bulk semiconductors band-gaps

J. Tang, et al., Adv. Mater. 22,1(2010)

Colloidal PbSe QDs in tetrachloroethylene (TCE)

Annealed NC-based solar cell

Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution Ilan Gur, Neil A. Fromer, Michael L. Geier, A. Paul Alivisatos 21 OCTOBER 2005 VOL 310 SCIENCE

Drop-cast films of 5.7 nm dia. PbSe NCs

Post-casting treatment of spin-cast films of PbSe NCs

"Microstructure of the spin-cast NC films before and after EDT treatment. (a) SAXS data, showing a ~16 Å decrease in the spacing between the NCs and a dramatic loss of superlattice order upon EDT treatment. Measurements were taken in air. (b, c) Planview SEM images of (b) an untreated film and (c) a treated film."

J. Luther, M. Law et al., ACS Nano 2, 271 (2008).

Layer-by-layer fabrication of PbSe NC films

Layer by layer (LbL) fabrication of PbSe nanocrystal (NC) films. Nanocrystal films prepared by dip-coating, alternating between (1) PbSe NCs in hexane and (2) 0.1 M EDT in anhydrous acetonitrile, allowing the film to dry between each layer.

J. M. Luther, M. Law *et al.*, "Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol", *ACS Nano* **2**, 271 (2008).

Ligand exchange in PbX NC films

Oleic acid, $C_{18} H_{34} O_2$ L $\approx 20 \text{ Å}$ 1,2-ethanedithiol $C_2 H_6 S_2$ $L \approx 6 Å$

Schottky barrier nanocrystal-based solar cell

- For MEG: Auger recombination typically occurs on ≤ 100 ps timescale (need fast exciton dissociation and/or diffusion to low density)
- High long-range mobility desired
- EQE > 100% would provide MEG process/concept confirmation

Layer-by-layer dip-coated PbSe films

Plan view SEM image of PbSe NC films prepared by layer-by-layer dip coating onto ITO substrate. LbL film shown was produced using 10-20 dip coating cycles.

J. Luther, M. Law et al., ACS Nano 2, 271 (2008).

"Grain boundary" density considerations

e.g. CdTe

Estimating effective "grain boundary densities" (boundary area / layer area) <u>CdTe</u>: ~1 μ m grain size (assumed cubic grains, ~ 1 μ m thick layer):

3 (μ m²/ μ m²) <u>PbSe QD film</u>: ~5 nm "grain size" (assumed cubic grains 5 nm on a side, 1 μ m thick film): 600 (μ m²/ μ m²) S/V \propto 1/r

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell

Octavi E. Semonin,^{1,2} Joseph M. Luther,¹ Sukgeun Choi,¹ Hsiang-Yu Chen,¹ Jianbo Gao,^{1,3} Arthur J. Nozik,^{1,4}* Matthew C. Beard¹*

Roll-to-roll processing from solution source (e.g., Nanosolar CIGS)

Figure 6 and 7: A laboratory sample of our nanoparticle ink. Nanoparticles shown to the right are an average of 20nm in diameter.

Good solar cells from nanoparticle inks (CIGS)

$V_{oc} = 0.6214 V$	I _{max} = 15.010 mA
$I_{sc} = 16.490 \text{ mA}$	$V_{max} = 0.5101 V$
$J_{sc} = 32.980 \text{ mA/cm}^2$	$P_{max} = 7.6540 \text{ mW}$
Fill Factor = 74.70 %	Efficiency = 15.31 %

from NanoSolar white paper

Colloidal semiconductor nanocrystals

- Solution synthesis, typically at elevated temperature
- Inorganic crystalline core surrounded by organic capping molecules
- Most frequently suspended in organic solvents
- Can be stored stably either in powder or solution form

Colloidal semiconductor NCs have typical diameters of 1 nm to 10 nm

Colloidal quantum dot – scale

Post-deposition treatment of drop-cast films of 5.7 nm dia. PbSe QDs

Best Research-Cell Efficiencies

Thermalization losses

Utilize photogenerated hot electrons to increase efficiency

1. Higher photovoltage: extract and utilize hot electrons

2. *Higher photocurrent: carrier multiplication through impact ionization (inverse Auger process)*

Impact ionization in bulk semiconductors

- <u>Bulk Silicon</u> ($E_g \approx 1.1 \text{ eV}$) exhibits an I.I. QY of just 1.2 e^--h^+ pairs per photon absorbed at 4.5 eV ($\lambda = 275 \text{ nm}, \text{hc}/\lambda > 4 \text{ E}_g$).
- Electron-phonon scattering dominates over I. I. up to very high photon energies.
- <u>Nanocrystals</u> exhibit a *reduced* momentum conservation requirement (NC surface can supply or absorb momentum during scattering processes).

Enhancing conversion efficiency using NCs & MEG

^{....} energizing Ohio for the 21st Century

MEG-active solar cells – efficiency limitations

from Mark Hanna, NREL

Signature of multiple excitons: Auger recombination

Global fit for three intensities; excitation *below* the MEG threshold energy:

 $\Delta \alpha(t) \propto A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3) + \dots$

where the pre-exponential factors
$$A_i = \sum_{m=i}^{\infty} P(m)$$

How efficiently is excess energy converted to excitons?

