Energy Flow and Conversion

PHYS 4400, Principles and Varieties of Solar Energy
Instructor: Randy J. Ellingson
The University of Toledo

February 4, 2014
Some near-term topics

Energy conversion
Need for energy conversion
Value of energy efficiency
Environmental impacts and challenges
Fossil energy
Greenhouse effect
Global climate change
Weather vs. climate
Forms of energy

- Thermal energy
- Chemical energy
- Electric energy
- Radiant energy
- Nuclear energy
- Magnetic energy
- Elastic energy
- Sound energy
- Mechanical energy
- Luminous energy
- Mass (E=mc²)
Thermal energy

- Temperature, determined by the average kinetic energy of a material’s constituent atoms and/or molecules.
- Vibrational energy in solids (phonons).
- Total thermal energy of a body depends upon the specific heat, or heat capacity of the material, which indicates how much thermal energy is stored as heat for a given object (SI units are J K\(^{-1}\)). The specific heat capacity expresses the intensive quantity, which refers to the amount of energy per unit mass required to raise the temperature by 1 K. Typical units are J/(kg K).
- Many energy forms convert naturally to thermal energy.

Thermal motion of a segment of protein alpha helix.
Chemical energy

• Refers to the chemical potential energy (or just “chemical potential”) stored as a result of the possibility of a chemical reaction.

• Reactants undergo change in a reaction, due to changing order and/or bonding configurations -- which can either absorb or release thermal or radiant energy.

• Exothermic vs. endothermic...

\[\text{O}_2 + 2\text{H}_2 \rightarrow 2\text{H}_2\text{O} + \text{Energy} \]

Energy = 286 kJ/mol

Electric energy

- Electrostatic potential energy, associated with the configuration of fixed charges under the Coulomb force, where k_e is Coulomb's constant:

$$\vec{F} = k_e \frac{q_1 q_2 \hat{r}_{21}}{r_{21}^2}$$

- Refers to electric potential energy, in the form of an electric current and an electric potential (voltage).

- Drawing power from the electric potential energy involves the conversion of the potential to another form of energy.
Radiant energy

The energy of electromagnetic radiation, i.e. “light energy” such as the energy delivered by a laser beam, or emitted by a blackbody radiator.

Radiant energy is the primary form of solar energy, which can be converted to thermal energy (straightforward) or electric energy (through photovoltaic devices).

... energizing Ohio for the 21st Century
Nuclear energy

- Practical: the thermal energy released in fission, which drives turbines in a nuclear power plant.
- In 2011 worldwide nuclear output fell by 4.3%, the largest decline on record, on the back of sharp declines in Japan (-44.3%) and Germany (-23.2%).

Mechanical energy

- Energy of motion and position: the sum of kinetic energy and potential energy.

- The equivalence between lost mechanical energy and an increase in temperature was discovered by James Prescott Joule. As an example, any inelastic collision results in conversion of mechanical energy to thermal energy [http://en.wikipedia.org/wiki/Mechanical_energy]
Energy flow (Earth vs. the Universe)

The Universe -- a richly complex landscape of energy flow:

Following the Big Bang, hydrogen was formed, and serves as the building block for other elements through fusion in stars (fusion releases thermal energy, manifested as radiant energy);

Heavy isotopes were formed in nucleosynthesis, reliant on the conversion of gravitational potential energy following supernovae collapse;

Heat from radioactive decay fuels some of the heat within planets’ cores; the rest comes primarily from the heat of formation, i.e. the conversion of gravitational potential energy to kinetic energy (heat).

Earth -- equally complex, and at present quite different due primarily to life and human activity:

Earth maintains many of the same energy fluxes, including the effects of heat of formation, radioisotope decay, gravitational potential energy, and the reception of radiant energy from our own star;

Photosynthesis operates as a huge photochemical conversion energy system, and served as a primary basis for the gradual formation of fossil fuels beginning ~5 to 650 million years ago.

Human activity transforms energy between numerous forms (liquid and gas fuels, solid fuels, electricity, bioenergy, thermal energy, gravitational energy, kinetic energy).
A **quad** is a unit of energy equal to 10^{15} (a short-scale quadrillion) BTU, or 1.055×10^{18} joules (1.055 exajoules or EJ) in SI units.

Source: LLNL 2012. Data is based on DOE/EIA-0384(2011), October, 2012. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports flows for non-thermal resources (i.e., hydro, wind and solar) in BTU-equivalent values by assuming a typical fossil fuel plant “heat rate.” The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 80% for the residential, commercial and industrial sectors, and as 25% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527
2011 energy-related CO₂ emissions

Energy–Related U.S. Carbon Dioxide Emissions in 2010:
~5632 Million Metric Tons

Source: LLNL 2011. Data is based on DOE/EIA–0384(2010), October 2011. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Non-fuel carbon and non-energy CO₂ is not shown. The flow of petroleum to electricity production includes both petroleum fuels and the plastics component of municipal solid waste. The combustion of biologically derived fuels is assumed to have zero net carbon emissions – lifecycle emissions associated with biofuels are accounted for in the Industrial and Commercial sectors. Emissions from U.S. Territories and international aviation and marine bunkers are not included. Totals may not equal sum of components due to independent rounding. LLNL-MI-411167

Also on the topic of energy flow...
Energy efficiency

Cost-effective? Example: “California began implementing energy-efficiency measures in the mid-1970s, including building code and appliance standards with strict efficiency requirements. During the following years, California's energy consumption has remained approximately flat on a per capita basis while national U.S. consumption doubled. As part of its strategy, California implemented a "loading order" for new energy resources that puts energy efficiency first, renewable electricity supplies second, and new fossil-fired power plants last.”

Appliances
Building design
Industry
Vehicles
Alternative fuels
Energy conservation
Sustainable energy
Rebound effect
Organizations and programs

Energy efficiency example:
of households in US = 132 x 10^6
Assume two 23 W CFLs replace 100 W incandescent, in each home.
Assume 3 hours/day on time.
Cost of CFL is ~6x higher, but lifetime is ~6x longer.
Real savings in electricity consumption:
(132 x 10^6)(77 W)(2)(3 hrs/day)(365 days/yr) = 2.2 x 10^{13} W hr/yr = 2.2 x 10^{10} kW hr/yr = 2.2 x 10^4 GW hr/yr
Davis-Besse puts out 7.7 x 10^3 GW hr/yr

http://en.wikipedia.org/wiki/Efficient_energy_use
Energy efficiency allows us to avoid building new electric power plants. “The cleanest energy is the energy you never use.”

“Energy efficiency costs 3 cents per kWh. By comparison, new natural gas power costs 6 cents per kWh or more, traditional coal equals about 11.1 cents per kWh, nuclear power is 12.25 cents per kWh, and biomass resources, geothermal, and wind have average prices of 8.9, 7.55 and 8.5 cents per kWh, respectively.”

http://www.theoec.org/campaign/energy-efficiency

California Power Mix (2011)

- **Natural Gas**
- **Coal**
- **Large Hydro**
- **Renewables**
- **Energy Efficiency**
- **Unspecified**

FierceEnergy

Published on FierceEnergy (http://www.fierceenergy.com)

Energy efficiency helps Xcel avoid building new power plants

January 27, 2013 | By Barbara Vergetis Lundin

Sources: CEC, NRDC analysis
Greenhouse Gas Equivalencies Calculator

http://www.epa.gov/cleanenergy/energy-resources/calculator.html
Environmental effects of energy

Every energy source presents environmental or health implications. Let's consider them now, from more traditional to more recent.

Wood
Coal
Oil
Natural gas
Hydroelectric
Nuclear
Wind
Solar
Modern bioenergy