Sunlight

PHYS 4400, Principles and Varieties of Solar Energy
Instructor: Randy J. Ellingson
The University of Toledo

January 23, 2014
Update on Ohio’s fuels for electricity generation

Trends observed since 2007:

- Coal is still dominant, but its share is declining.
- Natural gas is number 2, and its share is rising.
- Nuclear is flat.
- Wind is rising rapidly.
- Solar is rising, but still very small at just 0.1% nationally.
Solar Radiation Spectrum

- Sunlight at Top of the Atmosphere
- 5250°C Blackbody Spectrum
- Radiation at Sea Level

Spectral Irradiance (W/m²/nm)

Wavelength (nm)

energizing Ohio for the 21st Century
Earth’s Motion around the Sun

\[\delta = \text{angle of declination between Sun’s rays and the plane of the equator} \]

From “Solar Cells”, by C. Hu and R.M. White
After Coordinate Transformation
(earth-centric view)

Figure 2.1 (a) The conventional sun-centered view of the sun-earth system. (b) An earth-centered view, which is easier to visualize. For example, the declination angle δ between the sun ray and the plane of the equator is better illustrated in (b). The date given may vary by one day or so.

From “Solar Cells”, by C. Hu and R.M. White
Daily Variation in Energy Collection

From “Solar Cells”, by C. Hu and R.M. White
Solar Constant

We’ve been informed that the total luminous power output from the Sun is 3.846×10^{26} W.

Now we’d like to determine the portion of that power incident on Earth, and the average areal intensity (i.e., averaged over the area of Earth’s surface).

From in-class exercises, we figured out the solar constant ($\sim 1.75 \times 10^{17}$ W).

We found that the intensity of sunlight arriving at the top of Earth’s atmosphere is 1.375 kW m$^{-2}$.

We determined the intensity of arriving sunlight averaged over Earth’s total surface area to be 343 W m$^{-2}$. (averaged over the total area of the Earth, and averaged over day and night).

$r_{\text{Earth}} = 6.37 \times 10^6$ m
1 AU $\approx 1.496 \times 10^{11}$ m

energizing Ohio for the 21st Century
Standard solar spectra

Sunlight varies with factors including location, weather, and the time of day. Standard solar spectra are defined to enable comparison of materials and device performance among manufacturers and laboratories around the world.

There are standards for extraterrestrial and terrestrial sunlight:

Extraterrestrial: this spectrum, referred to as AM0, defines sunlight just above Earth’s atmosphere, where the sunlight has an intensity dependent on the solar constant.

Terrestrial: refers to sunlight which has passed through Earth’s atmosphere. There are two standard solar spectra, referred to as AM1.5G (G stands for Global Tilt), and AM1.5 Direct (+circumsolar).
AM0: the spectrum above Earth’s atmosphere

The AM0 spectrum applies to satellites and high-flying aircraft, which access the spectrum prior to any influence from Earth’s atmosphere.

Integrated spectral irradiance = 1366 W/m².
Atmospheric effects on sunlight

- Scattering
- Insolation
- Reflection

http://www.physicalgeography.net/fundamentals/7f.html

...energizing Ohio for the 21st Century
Air Mass

\[AM = \frac{1}{\cos \theta} \]

Does \(AM = \infty \) when \(\theta = 90^\circ \)?

\[AM = \frac{1}{\cos \theta + 0.5057(96.07995 - \theta)^{1.6364}} \]

http://www.pveducation.org/pvcdrom/properties-of-sunlight/air-mass

... energizing Ohio for the 21st Century
AM1.5G: reference spectrum including direct and diffuse sunlight

- AM 1.5: From the equation provided for Air Mass, one calculates that \(\cos \theta = 0.667 \), so that \(\theta = 48.2^\circ \). This represents the zenith angle, that is, the angle relative to the direction normal to Earth’s surface.
- Toledo latitude: 41.6639 ° N
- Integrating the energy within AM1.5G yields 1000 W m\(^{-2}\).
AM1.5D: reference spectrum including direct and circumsolar diffuse sunlight

Includes sunlight scattered within 2.5° angle of the direct sunlight. Used for clear days, relevant to concentrated sunlight applications for which the ability to focus the sunlight depends critically on the direction the light is traveling.

\[I_G = 1.1 \cdot I_D \]