Photosynthesis:
Energy From Sunlight
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Plant Cell Structure
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The Plant Cell Wall
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Plant Cell Structure
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The Photosynthetic Reactions Are Carried Out By Chloroplasts
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Chloroplast Structure
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Photosynthesis Is A Two-Step Process

Light Chloroplast
(photon)

4

Light e
reactions

> Chlorophy! < “

- : , O,
ATP NADPH
CYCLE B CYCLE
JATP? ©P+ ADP (NADPH NADP*+ b

Light-
independent

reactions
Q troma

CALVIN
CYCLE




/
s
v

Outermembrane
of chloroplast

Innermembrane
of chloroplast

energy

(a) Energy-transduction (b) €arbon-fixation
reactions reactions
(thylakoid membrane) (stroma)

Light Reactions



The Electromagnetic Spectrum
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Action Spectrum Of Photosynthesis
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Figure 10.5 Exciting An Atom
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Photoexcitation Of Chlorophyll
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Chlorophyll Molecules Are Found In Large Protein Complexes
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Photosystems Consist Of Two Parts

1. Photosynthetic Reaction Center
2. Antenna Complex

molecule A carrying
low-energy electron

oxidized molecule A

THYLAKOID
SPACE
thylakoid
membrane electron transfer
—» Produces molecule B
L T e carrying high-energy
STROMA ] electron
chlorophyll special pair of quinone
molecules chlorophyll molecules in

in antenna photochemical reaction center
complex



Relative rate of

Plants And Cyanobacteria Possess Two Photosystems

photosynthesis

t v t v t v

Far-red Off Red light Off Both Off
light on on lights on

Time



Comparative Photosystem Organization

cytochrome

EXTRACELLULAR
SPACE

Red, photochemical reaction center molecules;
(A) PURPLE BACTERIA green, light harvesting pigments

THYLAKOID
LUMEN
i
Cad L]
LHCHI LHCHI
STROMA

core antenna protein
(B) PHOTOSYSTEMII

THYLAKOID
LUMEN

STROMA PsaB Psa A

(C) PHOTOSYSTEM I Note: PsaA and PsaB are like D2-Core antenna protein
and D1-Core antenna protein fusions, respectively



Photosystems Consist Of Two Parts

1. Photosynthetic Reaction Center
2. Antenna Complex

molecule A carrying
low-energy electron

oxidized molecule A

THYLAKOID
SPACE
thylakoid
membrane electron transfer
—» Produces molecule B
L T e carrying high-energy
STROMA ] electron
chlorophyll special pair of quinone
molecules chlorophyll molecules in

in antenna photochemical reaction center
complex



lipid bilayer of bacterial plasma membrane
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Summary Electron Transfer Reactions Within the Reaction Center
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Electron Transfer Reactions Within A Purple Bacterial Photosystem
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Comparative Photosystem Organization
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Plant Photosystem II Structure
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Plant Photosystem II Structure
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Light Reactions Take Place On Thylakoid Membranes
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Electron Transport Pathway Of Photosynthesis

Mobile Carriers: Plastoquinone (PQ; organic molecule) and Plastocyanine (PC, Protein)
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Topology Of Chloroplast Photosynthetic Components
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Energetics Of Non-Cyclic Photophosphorylation
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Cyclic And Non-Cyclic Photophosphorylation
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Chemiosmotic ATP Generation
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Chemiosmotic ATP Synthesis
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Non-Cyclic Photophosphorylation Summary
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Ribulose 1-5-Bisphosphate Carboxylase-Oxygenase
(RuBisCO): The First Step Of The Dark Reactions
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Figure 14-39 Molecular Biology of the Cell (© Garland Science 2008)
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The First Stable Product Containing Fixed Carbon
From Carbon Dioxide
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The Dark Reactions
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The Calvin Cycle
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The Calvin Cycle
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Used For All Plant Carbon Metabolism

Glyceraldehyde 3-phosphate (G3P)



Overview Of Photosynthetic Reactions
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Metabolic Interactions In A Plant Cell

Lipids
(triglycerides)

. Fatty acids
3PG

I

CYCLE
-_; Acetyl CoA

! | i |
RuMP G3P GLYCOIiSIS

Nucleotides GLUCONEOENESIS

4

Nucleic acids

Polysaccharides

Hexose-P 4_' (e.g., starch,

1T cellulose)

Sucrose




Metabolic Interactions In A Plant Cell
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Energy Losses During Photosynthesis
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C;and C, Leaves Have Different Anatomy
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The Anatomy and Biochemistry of C, Carbon Fixation
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The Anatomy and Biochemistry of C, Carbon Fixation
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The CAM C, Pathway

Dark: Stomata opened Light: Stomata closed
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fiure 8.14 Crassulacean acid metabolism (CAM). Temporal separation of CO,
uptake from photosynthetic reactions: CO, uptake and fixation take place at night,
and decarboxylation and refixation of the internally released CO, occur during the
day. The adaptive advantage of CAM is the reduction of water loss by transpira-
tion, achieved by stomatal closure during the day. See Table 8.4 for a description of

numbered sections.













