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On curve fits, errors, and goodness of the fit— 
Original text by A. Compaan, with minor edits by R. Ellingson 
  
There will be many places in this laboratory where you can do fits to your data.  In many cases 
doing a very sophisticated fit does not make much sense, and often a straight line fit suffices.  In 
other cases a polynomial or exponential fit will be required.  However, please keep in mind some 
important rules about curve fitting and, most importantly, when you have done a fit, you must 
judge for yourself whether the fit is meaningful!  It is very tempting to let a computer program 
(spreadsheet or other numerical program) give some sort of line through the data.  Often, 
however, the fit turns out to be meaningless! 
 
Never report results with 5 or 8 significant digits unless that many digits are meaningful!!  In 
most cases, some of the most important analysis consists of your explanation for the relevance, 
significance, and believability of your numbers.  In some cases, the results may be good to only 
1 or 2 significant figures.  Furthermore, if you have a calculation of the expected result (say an 
electron concentration, mobility, or exciton temperature), your obligation as an experimentalist is 
to explain any discrepancy between your measurement and the calculated expected value which 
lies outside of your estimated experimental error.  The development of the ability to give a 
critical evaluation of the results of your experiment is among the most important goals of this 
course. 
 
If you have done a fit, you should be able to evaluate a "goodness of fit" parameter such as the 
chi-squared value.  See attached pages from Bevington's book. 
 
If σi is the estimated error in a measured data point yi which occurs at xi, then the chi-squared 
value for a set of data points which are fit to a functional form y = f(xi) is given by 
 

χ2 = Σ{[f(xi)-yi]/σi}
2, Eq. 1 

 
where the sum is over the N data points.  Now χ2 divided by the number of degrees of freedom is 
called the reduced χ2 or χ2

v = χ2/v.  v = N-n-1 is the number of degrees of freedom left after 
fitting N data points to n+1 parameters.  If χ2

v is about unity, the fit is probably OK;  but if the 
value of χ2

v is much larger than unity then the functional form f(x) is probably NOT a good fit.  
If the value of χ2

v is much smaller than unity, then you have done something wrong (such as a 
function with too many free parameters) or you have been very fortuitous!  For a small number 
of points you can do such an analysis on your calculator in a few minutes.  If a nonlinear least 
squares fit is done (as some spreadsheets do almost automatically, often with a third or fourth or 
higher-order polynomial), then you should provide some confidence values for each of the 
coefficients in front of the various polynomial terms.  If you cannot prove that the coefficient in 
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front of the fourth-order term, for example, is significantly different from zero then do not use it. 
You may then have to force the numerical fitting routine to use a lower order polynomial.  In 
many cases you may have to do a visual fit to make the judgment of whether adding a higher 
order term to the fit makes a meaningful improvement to the fit, although the χ2 value may also 
help.  Please note that when you add terms to your fitting function, you reduce the degrees of 
freedom and you will divide χ2 by a smaller number to get the reduced χ2

v which you are going 
to use to compare with one to judge the goodness of fit. 
 
Note the appearance, in Eq. 1 above, of σi which is the error associated with each individual 
point.  Often a judgment or measurement of this error is the most difficult part of an experiment. 
Sometimes you can evaluate σi by doing several, repeated measurements of the value and then 
computing the r.m.s. error.  Other times this will not be possible so that you will need to do some 
critical evaluation of the propagation of errors within the experimental apparatus.   
 
Many spreadsheets can do a linear least squares fitting to a set of data and some can do a non-
linear least squares fit.  If you use these, make sure you understand the fits and provide some 
estimate of the goodness of fit.  If the program has a different measure of the goodness of fit, 
make sure you understand it and explain it in your report. 
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A Primer on Error Propagation: 
 
1. Additive Variables: 
 
  y = ax
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 but, if errors are assumed uncorrelated, 
 i.e.,; if when δx

1
 > 0, δx

2
 may be > 0 or <0 with equal 

probability, 
 then we must add errors in quadrature: 
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2. Multiplicative Variables 
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 Here it is convenient to form the fractional error, 
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 Again, in quadrature (but now with fractional errors): 
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3. More Complex Relations: 

 e.g., rotational Raman:  I
j
 ~ (2j+1) e /kTE- j . 

 
 We want the temp, T:  (from ratio of I

j
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j
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Solve for T: 
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 What are the variables with significant errors? 
 ...the intensities I, I’ and the internuclear separation d 
 
 Now the differential calculus: 
  
   δT(I,I’,d) = .......(tedious!). 
 
 You can show, if you really want to, that 
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 Now add these fractional errors in quadrature again: 
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 That's it!!! 
 
 Remember that your intensities were obtained by counting and 

should have (at least) errors given by Poisson statistics.   

 Thus I ~ N and 
N

1
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