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20-um slit expose the film for about one minute. Develop the film and, using one of the two
methods described in Appendix D to determine unknown wavelengths, determine the
wavelengths of the spectral lines.

You should first identify which »” —v” transition corresponds to which band. You will
find reference 3 helpful in this identification.

For both the C°II, state and the B’II, state determine the rotational constants, B, and
B!, and the vibrational constants, w/, x., w7, and xZ, and then calculate the following:

. The average internuclear separation
. The vibrational energies

. Dissociation energy

The Morse potential

. Force constant k£

N B WN -

Also calculate hv,, the difference in electronic energy of the two states. Draw the Morse
potential for both states and indicate the vibrational energies.

14. ZEEMAN EFFECT: OPTICAL SPECTROSCOPY

Historical Note

The 1902 Nobel prize in Physics was awarded jointly to
Hendrik Antoon Lorentz, the Netherlands, and Pieter Zeeman, the Netherlands

In recognition of the extraordinary service they rendered by their researches into the influence of magnetism upon radiation
phenomena.

APPARATUS [Optional Equipment in Brackets]

'98Hg, Na, or He discharge lamp (preferably a Geissler tube)

Laboratory electromagnet [with tapered pole pieces]

Polarizer

Two converging lenses

Ebert spectrograph with photographic plates or Fabry—Perot etalon (mounted in vacuum can)
Constant-deviation prism spectrometer

Photomultiplier

Electrometer

Chart recorder

OBJECTIVES

To observe the Zeeman components for one or more spectral lines, measure the splittings,
and compare the results with the predictions of theory.

To understand the physical origin of the Zeeman effect.

To be able to predict, for the case of weak external field and LS coupling, the number,
relative intensities, polarizations, and splittings of the various components of a Zeeman
multiplet.
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KEY CONCEPTS

Multiplet Zeeman energy

LS coupling Polarization

Magnetic moment g factor

Bohr magneton Hamiltonian

Selection rules Dipole matrix element
Fabry—Perot spectroscopy Free spectral range
Finesse - Chromatic resolution
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INTRODUCTION

When an atom makes a transition from an initial state to a final state of lower energy, a
photon is emitted with an energy equal to the difference in energy of these states: A single
spectral line is observed that corresponds to this transition. If either of the two states
involved in the transition has a magnetic moment, then the application of an external
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magnetic field B causes the spectral line to split into several closely spaced components, the
extent of the splitting being proportional to B. In this experiment you will try to understand
and observe this splitting, known as the Zeeman effect. In what follows, we first treat the
relatively straightforward case of the Zeeman effect in “one-electron atoms” for large
external magnetic fields; we then move to the more practical, but slightly more complex,
case of small fields. Finally, we discuss the situation for multielectron atoms.

One-Electron Atoms

For many atoms, (e.g., Na) the optical spectrum is associated with transitions between
states of a single electron outside a closed inner shell. This single optically active electron
may have both an orbital and a spin magnetic moment. We can calculate the magnetic
moment p, associated with the orbital motion of this electron by use of a classical model in
which it orbits in a circle of radius r with speed v, as in Figure 14.1a. The magnetic moment
p is defined for any charge distribution as

d.,
10. 1
ted uEEervdq (C-m?/s) (1
8-.8 : Evaluating this for an electron in a circular orbit, in terms of its angular momentum
] is . L =r x myv, yields for p,
——Z L (C-m¥s) ()
R, = m
2SS, .
ter where the minus sign signifies that, for an electron, p, is always opposed to L. This result
is conventionally written in terms of g,, called the orbital g factor, and u, = eh/2m, called
lew the Bohr magneton:
fect
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where g, =1. If an external magnetic field B is applied, then, according to classical
mechanics, p, undergoes Larmor precession about B with angular frequency w = g, u,B/h,
thus altering the motion of the electron, as discussed in reference 5. The total energy of the
electron now depends on the relative orientation of p, and B because the presence of the
field contributes a magnetic (Zeeman) energy

ind,

the Ef=—p,-B Q)] 4
ave ;

Different orientations of L, as depicted in Figure 14.14, thus correspond to different values
the of EY. o
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FIGURE 14.1 (a) Classical picture of an electron orbiting a nucleus. (b) Different orientations for the
orbital angular momentum.
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Since the electron also possesses a spin angular momentum S, there is an additional
contribution to the magnetic moment of the atom, p,, given by analogy with equation 3 as

m=—2Rs (€Y )

with a corresponding contribution to the energy of

z=-n'B  (J) (6)
The total mégnetic (Zeeman) energy of the atom is thus

Ez=—(m +n)B () (7

It must be noted that in the expression for p,, the spin g factor g, is approximately 2, rather
than 1, as for g,, a result of relativistic quantum mechanics. Precise spectroscopic measure-
ments yield a value of g, = 2.00232, as predicted by the more refined theory of quantum
electrodynamics.

In the quantum-mechanical description of the one-electron atom, the state of the electron
is described approximately, in the absence of any external B, by the wave function
Wt m,.m (1> 0, @), which is an eigenfunction of the approximate Hamiltonian

2

_2
Hy=2-+V(®) () ®

where V is the Coulomb potential energy of the electron, assumed spherically symmetric,
and where we have ignored, for the moment, the spin—orbit interaction between the moving
electron spin and the nucleus (discussed in Experiment 12 and briefly below). The four
subscripts for y are the quantum numbers that describe the electron state. The positive
integer n is the principal quantum number. The integer ¢ indexes the magnitude L of the
orbital angular momentum L and can take on values from 0 through n — 1; L is then given
as [£(£ + 1)]'?h. The integer m, ranges from —¢ to +¢ and indexes the z component (or the
component along any fixed direction) of L:

L =mh (J-s) 9

This number then specifies the orientation of the orbit mentioned above in connection with
Figure 14.15. The electron has a spin quantum number s which is not included in the
subscript because it is always understood to be 1; the magnitude of the spin angular
momentum S is then given as S = [s(s + 1)]"?4 in analogy with L. The fourth quantum
number m, then gives the orientation of the spin (up or down) by specifying its z

component;
S, =m,h J-s) (10)

where m, is either +3 or —3. The energy of the state corresponding to y now depends on
n and ¢ but, since there is no magnetic field, is independent of m, and m,, which determine
the orientation of the moments p, and p,.

We now go the high-field limit by applying a magnetic field along Z that is so strong that
the spin—orbit correction to the Hamiltonian H,, of equation 8 is negligible by comparison
with the Zeeman interaction. The Hamiltonian for the system is then approximated as
H ~ Hy+ H,, where H is the Zeeman interaction Hamiltonian represented as the operator
equivalent of equation 7. The energy E is now calculated using the time-independent
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FIGURE 14.2 Effect of a very strong magnetic field on two
atomic states.

Schrodinger equation, Hy = Ey, to give
E=Eyn,¢) + Ez=Ey(n,¢) + poB(m, +2m,)  (J) (11)

where E, is the energy corresponding to H,, the zero-field Hamiltonian, and the values
g, =1 and g, = 2 have been used. Figure 14.2 shows the effect of a very strong field on two
states, one with n =3, /=0, and the other with n =3, £/ =1. Each of these levels,
degenerate for B =0, splits in the presence of B, as indicated to the right of the vertical
dashed line; the extent of the splitting, since we have ignored the spin—orbit interaction,
depends only on the sum m, + 2m,. Note that while only one transition (spectral line) is
possible if B =0, the application of B produces a system of lines corresponding to the
indicated transitions. For dipole radiation, only transitions obeying the selection rules
Am, =0, Am, =0, +1 are observed (the “allowed” transitions). These selection rules are
based on the evaluation of the dipole matrix elements between 1n1t1al and final states, and
are discussed in Chapters 8 and 10 of reference 1.

EXERCISE 1

Estimate the energy splittings, in electron-volts, of the spectral lines corresponding to the
transitions shown in Figure 14.2, as predicted by equation 11 for the high-field limit.
Assume a magnetic field of B ~ 10° G (i.e., 10? T). What additional information would you
need to determine the separation in wavelength for these lines?

Although the above calculation for the Zeeman splittings in the high-field limit is
straightforward conceptually, magnetic fields appropriate to this limit are beyond the
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capabilities of the electromagnets found in most undergraduate laboratories. In this
experiment, the fields used are more appropriate to the weak-field limit, in which the effect
of the spin—orbit interaction on the electronic states must be explicitly considered.

The spin—orbit interaction can be viewed as the interaction of the spin magnetic moment
p, of the electron with the internal magnetic field attributed to the motion of the positively
charged nucleus as viewed in the rest frame of the orbiting electron. Since this internal field
can be shown to be proportional to L, the form of the interaction can be written as
H, = {(r)L S, where {(r) is a function of the distance of the electron from the nucleus. The
electron states in zero external field are now determined from a Hamiltonian H' = H, + H,,:

p2

H' = m + V() +{(L-S @) ®)

The states |y’ are determined as eigenfunctions of H’ with energies E’, and the Zeeman
energy E,, now assumed very small compared with the spin—orbit energy contribution E,
is then calculated as a perturbation, using these states.

EXERCISE 2

The spin—orbit interaction may be written as H,, = —pu, *B;, where B; represents the
(spatially varying) internal magnetic field “seen” by the spinning electron due to its orbital
motion with respect to the positively charged nucleus. Estimate the average magnitude of
this internal field for an atom in which the average value of E,, is roughly 2 x 10~ *eV.

The states y’ are different from the states y determined by H, above in that for the
former, the angular momenta L and S, although constant in magnitude, are no longer
constant in direction: the L + S interaction causes them to precess about their sum, the zotal
angular momentum J =L+ S, which is strictly constant. Thus, ¢/ and s are still good
quantum numbers, but m, and m, are not; replacing these last two are j and m;, which index
the magnitude of J and its z component J,, respectively. According to the quantum rules for
the addition of angular momenta, j can assume any value from |/ — s| to |¢ + s| in steps of
1, depending on the relative orientation of L and S, as illustrated in Figure 14.3a. By
analogy with these, the magnitude of J is given in terms of its index j as J = [j(j + 1)]"?h,
while J, is given in terms of m; as

J=mh (J-s) (12)

Figure 14.3b shows the relationship between J, L, and S for an electron in the particular

S
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FIGURE 14.3 (@) Addition of angular momenta. (f) The relationship between J, L, and S for the case

£=2j=3m=3
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FIGURE 14.4 The effect of the spin—orbit interaction
on n =3 states.

case £ =2, j=3, m; =3; note the vector J for this state is constant in time, but may lie
anywhere in the cone for which J, = 3h.

The states i’ may thus be labeled as y;, , ; ., and may be considered as arising from the
states ¥, ; ., -, when the L - S interaction is “turned on.” This is depicted in Figure 14.4 for
n =3 states: The states (n, £, m,, m,), eigenfunctions of H,, are drawn to the left of the
vertical dashed line, while those of H” (n, ¢, j, m;) are to the right. Note that the / = 1 states
are split into a multiplet of states, one for each value of j, by the spin—orbit interaction; the
magnitude of the energy splitting is determined by the difference in the values of E,
calcuated for each state. States with different values of m;, but the same value of j, have the
same energy (are degenerate) in the absence of an external B field. The spectroscopic symbol
to the right of each level is the conventional, compact notation used to specify the set of
quantum numbers s, Z, j for each state in the form >+ ‘/j, where the capital letters
correspond to different values of £: S =0, P=1, D =2, and so on.

EXERCISE 3

Verify that the coupling of £ and s for the states of H, in Figure 14.4 produces states with
the j values indicated and that the spectroscopic notation is appropriate to each state of H’.

We can now calculate the Zeeman splittings of the levels characterized by the set of
quantum numbers (n, Z, j, m;) by evaluating E, of equation 7 for each of these states. This
is a bit more difficult than for the high-field case, since p, and p,, being proportional to L
and S, respectively, are no longer constant in direction for these states. The calculation can
be done by evaluating the matrix elements of the Zeeman Hamiltonian H in operator form,
but the vector model of the angular momenta discussed above provides an approach that is
physically much more insightful.

Figure 14.5a shows how L and S (and, hence, p, and p,) each precess about the constant
vector J in the absence of an externally applied B field. The angular frequency of this
precession is proportional to B;, the strength of the internal field discussed in Exercise 2. If
we now apply an external field B along the z direction that is much weaker than B, then
the precession of p, and p, about J is much more rapid than the precession of the total
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FIGURE 14.5 (@) L and S precessing about J. (b) J precess-
ing about B.
moment p =pu, + p, about B. Since we wish to evaluate the time average of £, = —p B, u

can be considered to be oriented, on the average, along —J as J precesses about B (shown
in Figure 14.5b), even though, instantaneously, p is never actually antiparallel to J. Thus,
we need to calculate {u, ), the average component of p along J; E, will then be given by

E;= —<u;>Bcos b, J) (13)

where 0,5 is the constant angle that J makes with B. This average of u; will be given by
{us> = p, cos 0, + pg cos O, (C-m?/s) (14)

where 0, ; and g, are the angles that L and S make with J. The cosines of these three angles
can be written as

L-J S-J
77 cos Og; =——

57 (15)

cos 0,5 = cosf,, =

S~

These can be evaluated in terms of the quantum numbers for the state. The dot product
L - J can be evaluated by expanding it as L*J=L-(L+S)=L?+L"S. For LS, note
that J2=(L+S)?2= L%+ S2+2L"S, so that L+ S can be rewritten as 3(J?> — L2 — S?). So
we have L+ J =XL?+ J? — S?). A similar procedure for S+ J yields S+ J = X(S? + J> — L?).
Equation 14 now gives {u, ) in terms of u, and yu,, which are expressed in terms of L and
S by using equations 3 and S with g, =1 and g, = 2. The result for E,, from equation 13,
is

_Ho o ap 272 Iz
E, 2hJ(3J +S L)Bj @) (16)

Substituting m;h for J,, as in equation 12, and the expressions for J, S, and L in terms of
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J, s, and ¢ gives E, in the form
E; = poBg;m;  (J) (17
where g;, known as the Landé g factor, is given by

JU+D+s6+D) -4+ 1)
J(j+1)

g=1+ (18)

The factor g; is computed for each level in a multiplet, and is a function j, £, and s for each
state; the Zeeman energy can then be calculated for each m; using equation 17. The total
energy for each state is thus £ = E’'(n, /, j) + E,. Note that for the one-electron atom being
discussed here, S =3 for all states.

EXERCISE 4

Explain why, in the weak-field limit, the average, but not the instantaneous, magnetic
moment vector is antiparallel to J.

EXERCISE 5

Verify the steps leading to equations 17 and 18.

An important example of a one-electron atom is Na, which has a single optically active
electron (n = 3) outside closed spherically symmetric electron shells. The first two excited
states of the electron along with the ground state are shown in Figure 14.6a. The closely
spaced yellow D lines, observed for B =0, are accounted for by transitions to the S, from
the P states. If a weak external field is applied, each state is split, as indicated to the right,
so that each D line has several components, separated in energy from the zero-field level by
E,. The D line spectrum, as it would appear on the photographic plate of a grating
spectrometer, is shown schematically in Figure 14.65.

mj
+3/2
2Py, _é +1/2
-4/ -1/2
(2g 3) =35
Py 172
&= 2/3 ~—-12
A A
Y 4 D,: 2Py 1028y, D,: 2Py, 1028, 5
A A
Y Y No field
D, | D
S1 Tly T2y +172
Eg=2 -1/2
No external Weak external Weak field
magnetic field magnetic field
(@) (®)

FIGURE 14.6 (a) The effect of a weak external magnetic field on three states of Na. () The effect of a weak

magnetic field on the appearance of the Na D-line spectrum on a grating spectrogram.
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EXERCISE 6

Verify the assignment of g factors indicated by Figure 14.6a to each of the levels. Determine,
for each of the Zeeman-split D lines, the shift of the photon energies of the indicated
transitions relative to the B =0 values if an electromagnet provides a field of 5kG.
Summarize the results in a rough sketch that indicates schematically how the lines would
appear on the photographic plate of a grating spectrograph.

Atoms with Several Optical Electrons

The calculation of the Zeeman patterns can be extended to atoms with more than one
optically active electron outside closed shells. The one-electron Hamiltonian of equation 8’
is not adequate to describe the interactions of these electrons with each other: The potential
energy is no longer spherically symmetric. The system must be described by a many-electron
Hamiltonian that includes the interactions between the optical electrons, and by wave
functions that give information about the entire system of optical electrons. The calculation
of the electronic states and the Zeeman patterns for these atoms is, in general, quite
complex.

For some atoms of intermediate atomic number (for Hg, e.g.), the spin—orbit interaction
is weak enough so that its effect may be considered after the stronger effects of the Coulomb
interaction between the outer electrons have been taken into account. The effects of a weak
external magnetic field are then considered as a perturbation, so that the treatment is quite
analogous to that discussed above for a single optical electron. In this scheme, referred to
as Russell-Saunders (or LS) coupling, the states of the outer electrons are built up by
considering the effects of the various interactions in order of their importance. For the
simplest case of two outer electrons, the following occurs:

1. These electrons are each assigned quantum numbers »,, £, and n,, £, as if they were
individually in states appropriate to the Hamiltonian of equation 8.

2. The relative orientations of the spins are correlated to the spatial motions of the electrons
in such a way that states of constant total spin S’ =S, + S, are formed, with correspond-
ing quantum number s’. The possibilities for s’ are determined from the angular
momentum addition rules: s’ can have any value from s, + s, down to |s, — s2| in steps
of 1. Since s =% for electrons, this means, for two electrons, that s” can be 0 or 1. States
in which s” = 0 are called singlet states; s’ = 1 states are triplets. Triplet states are usually
lower in energy than singlets.

3. The orbital angular momenta next add to form a total L’ = L; + L,, so that, in analogy
with the spins, the magnitude L’ is indexed by the quantum number ¢’ which takes on
values from ¢, +¢, down to |/, —¢,| in steps of 1. The value of ¢’ for a state is
designated spectroscopically, as for one electron, by S, P, D, and so on, for /' =0, 1,
2,.... States with the lowest value of /’ usually have the largest energy.

4. The spin—orbit interaction couples L’ and S’ for a state to form a constant total angular
momentum J'=L"+ 8" as for the single electron. The resulting states of the multiplet
each have a value of j* that ranges from /¢’ + s down to |/’ — s’|. The spacing between
these states of different j* depends on the strength of the spin—orbit interaction; the states
with higher j° values have the higher energies.

5. Each state with a given j' corresponds a series of states corresponding to different
orientations of J, that is, to different values of J, = m h, where m; ranges in steps of 1
from —j;” to +j. In zero magnetic field, states with different m, are degenerate;
when a weak field is applied, the Zeeman energy shifts are given, as in the one-electron
case, by equations 17 and 18 with s’, £’, j°, and m; substituted for their unprimed
counterparts:
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E; = poBgym; ) (17)
JU+D+s@"+) ="+ 1)

L, = 1 18,

g G +D (1%

Each state built from an initial configuration (n,¢,, n,¢,) is now characterized by the set
of quantum numbers (s’, ¢’, j’, m;). The notation > *'¢, for each term in a multiplet is
the same as for the one-electron case.

This coupling scheme is illustrated schematically in Figure 14.7, for the case of zero
external field, for three configurations of the two outer electrons of Hg: the ground state 6s>
(i.e.,n,=n,=6,¢,=¢,=0), 6s6p, and 6s7s. Note that for the 6s? configuration, only s’ =0
is possible, since the Pauli exclusion principle does not permit the spins S, and S, to be
parallel. The indicated transition 3S,—3P, produces the 4046-A line, which yields a
relatively simple Zeeman pattern upon application of an external field. Figure 14.8a shows
the effect of an external field on these two states. Note that the 3S, state splits into three,
while the 3P, state is unaffected, thus giving rise to three components in the Zeeman pattern,
as indicated in Figure 14.85. The notation employed in this schematic representation of the
Zeeman pattern is explained below in connection with selection rules, intensities, and

polarizations.
s'=0 €'=0 j' =0
6s7s _- -- 1S,
<y R . 38,
s'=1 =0 ii=1
4046 AHg
s'=0 =1 Jj'=1
/ == 1P1
6s 6p / )
— < &' =1 =1 ,,/—-3”2
) Sy b
J'=1 o3P,
j =0 “Fo
652 s'=0 I'=0 j'=0
—_—— - ISO
FIGURE 14.7 The LS coupling scheme for three states of
the two outer electrons of Hg.
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FIGURE 14.8 () Effect of a magnetic field on the states involved in the
emission of the 4046-A line in Hg. (b)) The Zeeman pattern
for the 4046-A line in Hg.
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EXERCISE 7

Show that the Zeeman components of the 4046 A in Hg are separated in energy by
E;, =ehB/m.

Selection Rules, Intensities, and Polarizations

The formalism of quantum mechanics not only allows us to predict the wavelengths of the
Zeeman components of a spectral line, but also can relate the appearance of the pattern to
the nature of the states involved in the various transitions.

The intensity with which a given wavelength is emitted in an atomic transition is
proportional to the probability with which that transition occurs. This can be calculated by
computing the matrix element of the electric dipole moment P = X, er;, where r; is the
position of the ith optically active electron in the atom, by evaluating the expression

Pﬁ=Jl//’f"Pl//idV (C-m) (19)

where Y; and Y, are the initial and final states of the atom. The relative intensities of the
various components of a Zeeman pattern are then each approximately proportional to PZ.
Calculated for the set of transitions corresponding to any pair of states > *'¢’, (e.g., to the
D, line shown in Figure 14.6), the relative intensities depend only on the initial and final
values of j* and m; for each individual component, independent of the kind of atom to
which the LS coupling scheme has been applied.

Selection rules arise from the observation that certain of the dipole matrix elements are
almost zero, so that transitions between certain states are forbidden, that is, make almost no
contribution to the observed spectral pattern. If there is no external magnetic field, the
“allowed” (Pg; # 0) transitions must, for the LS coupling scheme, satisfy the conditions

As’=0
Al =0, +1 (20)
Aj’=0, +1 (butj =0-; =0 is forbidden)

for the changes in these quantum numbers during a transition. When an external magnetic
field is applied, the number of observable transitions increases, but these are subject to the
additional selection rule

Am; =0, £1 (but m, =0->m; =0 is forbidden if Aj"=0) 21

EXERCISE 8

Verify that all of the transitions indicated in Figure 14.6 are consistent with the selection
rules stated above.

Evaluation of PZ for each pair of initial and final states that satisfy the selection rules
gives expressions for the total relative radiated intensity I of each component of the Zeeman
pattern, in arbitrary units (reference 3):

For j*—j’ — 1 transitions

m;—>m; + 1 I =3a(j' Fm, — 1)(j'Fm;)
m; —m,; I=a(j +m)(j —my) (22)
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For j’—j’ transitions

mj'—)mj'il I=b(j,"—‘mj")(j,imf'+l)

— 2
m; —m; I=>bm;

where a and b are constants. The expressions for the j—j’ + 1 transitions may be added by
« considering the reverse of the j°—,’ — 1 transitions and noting that forward and reverse
intensities are the same (P2 = P%).

Experimental observations of the Zeeman effect seldom measure the total intensities
directly, since detection systems generally measure light emerging from the atom in a narrow
range of directions. It is important to note that the radiation emitted by the transitions
considered above is anisotropic: The intensity as well as the polarization of the light in each
component (for each value of Am;) depends on the direction of emission relative to B and
on Am; for the associated transition. Figure 14.9 is a top view that illustrates the polarization
of light emitted parallel to B (longitudinally) and perpendicular to B (transversely).

For the transverse observation, the emitted radiation is l/inearly polarized: for transitions
in which Am; =0, called the ® components, the electric field € of the radiation is parallel to
the applied field B; for the Am; = +1 transitions, or the ¢ components, € is perpendicular
to B and thus oscillates along a direction perpendicular to the plane of the paper, as indicated
by the symbol in the figure.

For longitudinal observations, the ¢ components are circularly polarized, and the =
components do not appear. Since all components of a Zeeman pattern are visible when viewed
transversely, this is the experimental arrangement most often used. The relative intensities for
the individual components in the transverse direction are given by

For j*—j’ — 1 transitions

myomy+1 I=a'(jFm—1)(J Fmy)
m,—m, I=4a’(j +m)(j —my) (23)

For j’—j’ transitions

m,—m; + 1 I=b'(j £m;+1)(j Fmy)

— Ah 2
m; —m; I=4b'm;

where a’ and b’ are constants and the units for I are again arbitrary. For a given Zeeman
pattern, the total intensity of the emitted radiation from all allowed transitions is isotropic
and, on the average, has no net polarization.

Magnet pole pieces Longitudinal observation

Source \
. O
Am; = %

B =B: 1

e)(Amj.= +1

€ > Amj, =0
Transverse observation

FIGURE 14.9 Polarization of the components of a Zee-
man pattern.



254

EXPERIMENTS

Figure 14.8b illustrates the way in which the Zeeman pattern is conventionally represented
for a transverse observation. The horizontal axis represents the transition energy, relative to
that of the zero-field transition. The = and ¢ components are represented above and below
this axis, respectively, by vertical lines with heights proportional to the intensities.

The observed polarization states are sometimes explained by considering the radiation
produced by the oscillating dipole associated with the classical electron orbit for the various
possible atomic orientations, as in Figure 14.15. This is little more than a mnemonic device,
since the nature of the radiation must be associated with the motion of the charge during the
transition that produces it. Thus, the polarization can be understood by evaluating the
time-dependent expectation value of the dipole moment P(¢) during the transition, when the
states can be expressed as a mixture of initial and final states y; and y,. P(¢) can be expressed
in terms of the quantity P; of equation 19:

P(?) oc Re[P;; exp(iw?)] (C-m) (24)

where w = (E;— E,) /h is the frequency of the photon emitted in the transition between the
two states of energy E, and E;. For = transitions, P oscillates along the z direction, so that
radiation polarized along Z would be viewed transversely, but no radiation is emitted
longitudinally, along the dipole axis. For ¢ transitions, P rotates in the xy plane, producing
circularly polarized light viewed along Z; when viewed transversely P appears as a linear
dipole, perpendicular to Z, and so produces an € perpendicular to the magnetic field.

EXERCISE 9

Verify that the transverse intensities for the Hg 4046-A line that are indicated in Figure
14.8b correctly correspond to the transitions of Figure 14.8a.

EXERCISE 10

Make a sketch, similar to Figure 14.8, for the Hg 5461-A line, which is produced by a
38, - 3P, transition. Indicate, for the allowed transitions, the relative transverse intensities
and the energy spacings relative to the zero-field energy.

EXPERIMENT

Listed in Table 14.1 are a few transitions suitable for Zeeman effect observations in Hg,
Na, and He—three atoms for which the above discussion of LS coupling is appropriate.
For the Hg investigations, a sample enriched with '°®Hg (available commercially) should
be used since its nucleus has zero spin; thus, the complications of the hyperfine structure
associated with the magnetic moment of the nucleus are avoided.

The high resolution required for the observation of the Zeeman splittings may be
obtained by use of either an Ebert-mount spectrograph or a Fabry—Perot interfero-
meter; recording of the spectra may be done either photographically or with a photo-
tube. The Ebert-mount spectrograph is described in Appendix D; below we briefly describe
the operation of the Fabry—Perot device and an experiment that utilizes it with the
phototube.
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TABLE 14.1 SOME TRANSITIONS SUITABLE FOR ZEEMAN EFFECT

OBSERVATIONS

Atom Color Wavelength (A) Initial Configuration Final Configuration

Hg Violet 4046 6s 7s 35, 65 6p 3P,
Yellow 5791 6s6d'D, 6s 6p 'P,
Green 5461 6s 7s 3S, 6s 6p 3P,
Violet 4358 6s 7s 35, 6s 6p 3P,
Yellow 5770 6s 6d ®D, 6s 6p 'P,

Na Yellow 5896 3p 2P, 3s 25,
Yellow 5890 3p %P, 3s 25,

He Blue 4471 4d 3D, 2p 3P,
Green 5016 3p 'p 2s 'S,
Yellow 5875 3d 3D, 2p 3P,

The Fabry-Perot Etalon

Consider a ray of monochromatic light, of vacuum wavelength J,, incident on an etalon
consisting of a pair of parallel glass plates separated by a gap of width d filled with a
medium with index of refraction ng, as illustrated in Figure 14.10. The inner surfaces of the
plates are partially mirrored so that, if the angle of incidence 6 is small, the ray is multiply
reflected. The optical path for each of the rays emerging at the right is different, so that
beams will exhibit interference. The phase difference between adjacent emerging rays can be
calculated by considering d¢, the difference in path lengths for the rays emerging at B and
D. Relative to the ray emerging at B, the ray reflected at B has an additional path length,
measured from B to the wave front at D’, of 6/ = BC + CD’ = 2d cos 6. If we neglect the
relatively small additional phase changes due to the metallic film, the difference in phase, ¢,
for these two rays is

0 =2n % =47, cos 0 % (rad) (25)

where A = Aq/n; is the wavelength in the medium between the plates. The intensity 7, of the
radiation transmitted through the Fabry—Perot will be a maximum if the beams interfere

d’—>{ €3

\

€2

\

. )
il >

€

\

FIGURE 14.10 Multiple reflections of a beam between
the plates of a Fabry—Perot etalon.
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constructively, that is, if, for some integer m,

8¢ =2nm  (rad) (26)

EXERCISE 11

Verify trigonometrically the relationship ¢ = 2d cos 6, which leads to the expression for §¢
of equation 25.

The amplitude of the transmitted electric field ¢? can be found in terms of the incident
amplitude ¢? by superposing, with appropriate phase factors, the time-dependent field
strengths of the transmitted beams. As in Figure 14.10, the time-varying strength of the
electric field ¢, of the kth transmitted beam can be written as €9 exp(iwt), where kK =0

~ corresponds to the first transmitted beam, which has not been reflected. The field transmis-

sion and reflection coefficients for the inner surfaces of the plates, ¢ and r, can then be used
to write €% = t2r%¢?. The phase of the kth beam lags behind that of the k = 0 beam by an
amount k é¢. The field strength ¢, is then expressed as

€~ i €%, expli(wt — k 8¢)]

k=0

= l: i (t%r*) exp(—ik 5¢)] €? exp(iwt) (N/O) 27N
K=o

where the number of reflections has been assumed so large that ¢, may be approximated by
extending the series to an infinite number of terms. Evaluating this geometrical series yields

T o .
€= |:1 " Rexp( —iéd))]ei exp(iwt) (N/O) (28)

where T = ¢? is the transmittance and R =r? the reflectance of the metal film. Since the
intensity of the emerging beam is proportional to ¢e€¥, equation 28 gives the ratio of
transmitted and incident intensities as

L, (T V 1
I~ (1 —R> 1 + F sin%(5¢/2) (29)

where the abbreviation F =4R/(1 — R)? and the identity cos d¢ = 1 — 2 sin%(6¢/2) have
been used. This ratio is plotted in Figure 14.11a as a function of the phase difference d¢ for

I
10— 25sin~1(1//F) 2

!
= -
~" 0.5 Y ;
F=200 ~

R=0.87
0 50
2tm 2x(m + 1) 56 0
(@) (b)

FIGURE 14.11 (a) The ratio of transmitted and incident intensities for a Fabry—Perot etalon
with R = 87. (b) Intensity pattern from a Fabry—Perot for two barely resolved
peaks.
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Source

a reflectivity of R =0.87, assuming that the reflecting film absorbs no energy (i.e., that
T+ R =1). Note, as mentioned above, that the peaks in the transmission occur for
o¢p =2mm.

Two ways in which the etalon can be used to measure wavelength are illustrated in
Figure 14.12. If an extended source is configured with the etalon and two converging lenses,
as in Figure 14.12a, rays enter the first plate of the Fabry—Perot with a range of incident
angles 6. Each value of 8 corresponds to a value of d¢ given by equation 25 and to a radial
position on a screen or photographic plate to which rays with this value of 8 are focused;
a series of bright rings are formed with radii corresponding to values of 8 for which
d¢ = 2nm. Measurements of these radii may then be used along with equations 25 and 26
to calculate the wavelength differences between the spectral components of the light from
the source. As is discussed in reference 8, the wavelength separation for two adjacent fringes
(corresponding to the same order m) with diameters D and D’ is given by

AL = AD?*— D"?)/8f* (m) (30)

where fis the focal length of the lens between the screen and the etalon.

A second method for determining spectral splittings, discussed further below in connec-
tion with the Zeeman effect measurements, is called central spot scanning, illustrated by
Figure 14.12b. In this technique, the index of refraction »; or the etalon spacing d is varied,
thus changing d¢. Peaks in I, are observed for the light allowed through the pinhole, for
which 6 = 0. From the curve of I, versus n; (or d), one can deduce the separations in A for
the various components of the incident beam.

Etalon

(@) Screen
Detector
Source : @
Etalon
Pinhole Pinhole
screen screen

)]

FIGURE 14.12 (a) Ring pattern produced by a Fabry—Perot with an extended source. () Central spot scanning with a

Fabry—Perot.
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Two parameters that determine the suitability of the Fabry—Perot for a particular set of
measurements are the free spectral range Ay and the finesse F;,. The free spectral range is
that difference in wavelength between two spectral components of the source whose intensity
maxima just overlap, that is, d¢(4y) — (4, + Adye) = 27. Using equation 25 for d¢ gives
Alye for 6 =0:

A3

AAO{ = 2nf d

(m) @31

EXERCISE 12

Verify that this expression for Al is nearly exact for visible wavelengths and an etalon
having d = 0.500 cm and n;= 1. What is Al in this case if A, ~ 4046 A?

The finesse F, is the ratio of the separation, in d¢, of two adjacent maxima in Figure
14.11a to the full width at half-maximum (FWHM) of the peaks, labeled y. F;, can be related
to the reflectivity of the etalon surface by noting that equation 29 implies that, for large
values of the parameter F (defined below, equation 29), I, falls to one half its maximum
value when d¢ deviates by 2/F'? radians from 2nm, its value at the mth peak. The full
width y is just double this amount, so y = 4/F"/2, Since two adjacent peaks are separated by
a phase difference of 2n, F, = 2n/y = nF'/?/2. Substituting the definition of F equation (29)
gives F, in terms of R:

F, =§ (32)

EXERCISE 13

Verify that I, falls to half of its maximum value when ¢ deviates from a peak value by
2/F'? radians. What approximation must be made to obtain this result?

We will say that two wavelengths 4, and A, = 4, + A4, are resolvable with the etalon if
the phase differences d¢, and ¢, to which they correspond (for fixed values of n;, 6, and
d near a transmission peak) are different by at least the FWHM, v, of the 1,/I; versus ¢
curve: 0¢, — ¢, = 2n/F, for resolution of the two wavelength components. Figure 14.116
illustrates the intensity pattern due to two closely spaced wavelength components whose
peaks are just barely resolved. To express the above resolution criterion directly in terms of
wavelength separation, an approximation for é¢, — d¢, in terms of Ai, may be obtained by
differentiating equation 25 with respect to A,, giving us d¢p, — 6@, ~ d¢(4g)(ALy/A), Where
Ao~ Ay~ 4,. Since 0¢(4,) ~2mm near a peak, this means that two wavelengths may be
resolved if A, 2 Ao/mF,. The ratio of 4, to the minimum resolvable wavelength difference,
(AZg)min, i the chromatic resolution R, and is given by

_ A _nmﬁ
Ro= B T I-R 2

EXERCISE 14

For the situation described in Exercise 12, estimate the chromatic resolution of an etalon
with surfaces that are 87 percent reflecting. Is this resolution sufficient for the study of the
Zeeman pattern of, for example, the 4046-A line of Hg using the magnetic fields available
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to you in your laboratory? What other factors will determine your ability to resolve the
individual components of the Zeeman pattern?

Zeeman Effect Measurements

Figure 14.13a is a block diagram of the apparatus that can be used for the transverse
observation of the Zeeman effect through the use of the central spot scanning technique
described above. Light from the source, located between the magnet pole pieces, passes
through converging lens 1 (and, optionally, through a polaroid sheet) so that it is incident
on the Fabry—Perot etalon as a parallel (linearly polarized) beam at normal incidence. The
etalon is located in a vacuum chamber, which can be evacuated and refilled with an
adjustable leak (e.g., with a needle valve control); the index of refraction n; can thus be
varied by varying the pressure in the chamber. Lens 2 focuses light exiting the etalon onto
the slit of a constant-deviation prism spectrometer (discussed in reference 6, Section 5.5);
the prism can be rotated so that light from the spectral line under investigation can be
viewed at the eyepiece. The data are taken by replacing the eyepiece with a pinhole so that

. Fabry-Perot
Prism Polaroid
spectrometer —_— - —_ ]
Lens 2 Vacuum can Lens 1 | Magnet |

Eyepiece

Photomultiplier

L Electrometer } Chart
recorder

High-
voltage
supply
(a)
Fabry Perot
s O ' 1 o \::‘;' Source
Spectrometer Lens 2 Lens 1
slit
Polar0|d
—V— Pinhole
Photomultiplier
(b)

FIGURE 14.13 (a) Apparatus for the transverse observation of the Zeeman effect.
(h) Optical arrangement for the observation of the Zeeman effect.
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light from the center of the Fabry—Perot pattern enters the photomultiplier tube. The
photocurrent is detected with an electrometer, the output of which is connected to a chart
recorder. Some further details of the optical system for this mode of operation are included
in Figure 14.135.

With the Fabry—Perot ‘“‘crossed”” with the prism spectrometer in the fashion described
above, scanning of the Zeeman pattern is accomplished by slow readmission of gas into the
evacuated vacuum chamber, which results in an n; that varies in an approximately linear
way with time. If the output of the phototube is then recorded as a function of time, the
result will be a scaled version of the intensity versus n; curve. For each wavelength
component, the phase difference d¢ is, according to equation 25, proportional to ng, so that
for a single wavelength (e.g., for a spectral line observed with B =0), a portion of the I,
versus n; curve derived from a pressure scan would appear as in Figure 14.14a; for two
closely spaced wavelengths, the scan would produce a double-peak pattern, shown in Figure
14.14b for the case of unequal intensities. The splitting 4, — 4, can be estimated in terms of
ne,, ngy, the free spectral range Ay, and Ang,, the change in n; between successive orders:

Ay— Ay ngy—ng
~/

~ 34
Adgs Ang, (34
m m+1
It
0!
1 ne
(a)
A
A2
It
0 |
1 1 nf2 ng
Il< Angg |

(®)

FIGURE 14.14 (a) /, versus n; curve derived from a pressure scan.
(p) Appearance of the /, versus n; curve in the case of two
closely spaced peaks.

EXERCISE 15
For the wavelength and etalon in Exercise 12, estimate the number of intensity peaks that
would be seen in a scan from zero pressure up to atmosphere, if n,~ 1.000277 at 1 atm

pressure.

With the Fabry—Perot and its vacuum can out of the optical path, collimate the light
from the source with lens 1 so that it does not spread along the path. Use lens 2 to focus
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the light on the spectrometer slit. With the eyepiece in place, adjust the spectrometer and
lens 2 to obtain the brighest spectral line images. Place the etalon, with its vacuum can, in
the optical path and adjust it so that the ring pattern is centered in the eyepiece; the light
reflected from the etalon should be directed back toward the source. Adjust the pressure for
a peak in the intensity of the light entering the spectrometer and replace the eyepiece with
the pinhole and phototube assembly. Maximum signal can be obtained by adjustments of
the focus and the prism orientation.

The strength of the magnetic field should be measured for each set of observations. To
eliminate error due to hysteresis in the magnet iron, the field measurements should be taken
after the scan and before changing the magnet current.

For the spectral line(s) selected, predict the Zeeman patterns and produce pressure scans
at a few different values of B. The central component may be filtered out with a polarizer
to facilitate measurements of the splittings. As is suggested above, these splittings may be
estimated as fractions of the free spectral range.

EXERCISE 16

The superposition of intensities from two closely spaced peaks will cause the measured
separation in wavelength to be different from its actual value. Will your measurements then
yield overestimates or underestimates of the splittings? How would you attempt to correct
for this error? Note in this connection that the best data are obtained for splittings that
amount to about one half of the free spectral range.

EXERCISE 17

Investigate the linearity of the splittings as functions of the field and derive, for each
observed pattern, a value of yu, for comparison with its accepted value. Repeat enough of
the measurements to derive an estimate of the associated uncertainties. Do your observa-
tions support the theory of LS coupling? If you can estimate your relative intensities, are
they what you expect?

Summary

In atoms of intermediate atomic number for which the structure of the optical electrons is
adequately described by the Russell-Saunders coupling scheme, the states (wave functions)
for these electrons may be described by the quantum numbers s’, ¢’, j°, and m;. The energy
of these states may be expressed as E= E’(n,s’,£’,j’) + E,, where E, is the Zeeman energy,
given by

E; = uoBg;m; (J) o (17

where the Landé g factor is

(18)

UG+ +s(s"+1) =1+ 1)
gr=1+ vy
2°(i"+ 1)

The energy levels E” are illustrated schematically for a few multiplets of Hg in Figure 14.7, and
Figure 14.8 illustrates the effect of a magnetic field on these levels, that is, the Zeeman effect.
For spectral lines resulting form the transitions between pairs of states in different multiplets,
calculations of the dipole matrix elements leads to selection rules, intensities, and polarizations
for the radiation emitted in various directions.
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The Zeeman effect may be investigated quantitatively by measuring the splitting, produced
by an externally applied magnetic field, of the spectral lines corresponding to transitions
between states of a multiplet. The high resolution required can be obtained by use of either an
Ebert-mount spectrograph or by a Fabry—Perot interferometer. The central spot scanning
technique for the Fabry—Perot etalon, illustrated in Figure 14.13, produces intensity peaks, as
in Figure 14.14, from which measurements of the Bohr magneton may be derived.

COMPUTER-ASSISTED EXPERIMENTATION (OPTIONAL)

Prerequisite '

Experiment 6, Introduction to Computer-Assisted Experimentation.

Introduction

The relatively simple method of acquiring and analyzing the Zeeman effect data suggested
above depends for its success on the linearity of the relationships (a) between s, (the index
of refraction of the air between the reflecting surfaces of the interferometer) and p (the
pressure), and (b) between p and the time elapsed since beginning the readmission of air to
the can, which is measured on the time axis of the chart recorder. The linearity between
pressure and time may be improved by using a needle valve to impose a very low flow rate
for the air; this also minimizes effects due to local temperature changes and turbulence
during the pressure scan. The magnitude of the problem posed by the nonlinearity of n;
versus p can be assessed by examining the quantity on¢/0p, which is given by reference 7 for
a constant temperature of T'=15°C as

0
(ﬁ> =(n?—1)(1.3149 x 1073 4 1.626 x 10~%p) (35)
op Jr-1s-c

where p is in torr and n{ is the index for air at p = 760 torr and T = 15 °C. The effect of the
nonlinearity given by this relationship depends on the range of pressures used in the scan,
but is small for most cases of practical interest.

These nonlinearities can be effectively compensated for by a computer interface that
utilizes software to linearize these data. Additionally, the computer affords a convenient
method for averaging data (from the same scan or from different scans) in the event that
low signal levels make this appropriate.

EXERCISE 18

Using equation 35, derive an expression for the index of refraction as a function of p at
15 °C. For the pressure range required to scan one free spectral range at optical wavelengths
with your etalon, estimate the percentage by which the corresponding actual change in n;
deviates from the change calculated under the assumption of complete linearity.

Experiment

The configuration we suggest for computer-assisted data acquisition from central spot scans
is shown in Figure 14.15. The output of the pressure transducer is an analog voltage that
is linearly related to the pressure within the vacuum can; this signal is input, via a
conditioning circuit (if required), to one of two input channels of the ADC that are to be
polled for data by the software. The output of the electrometer is fed to a second channel
via another conditioning circuit.
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FIGURE 14.15 Configuration for computer-assisted data acquisition.

If the output of the pressure transducer matches the ADC input range, then no
conditioning circuit is required. If conditioning is required, a modification of the circuit
shown in the upper half of Figure 6.5 (consisting of op-amps 1 and 2) can be used to
provide the appropriate gain and offset. The transducer output ground can be directly
connected to pin 3 of op-amp 1 and resistors R; and R, can be eliminated. R, and Vg
should be adjusted so that the full range of the ADC input is utilized for maximum
precision.

The conditioning circuit for the electrometer output may be of the same design as that
for the transducer, but since the input signal range during the scan will be determined by the
light intensity and the electrometer scale setting, it is a good idea to adjust the conditioning
gain and offset by setting up and observing some scans on the chart recorder before
switching the output of the conditioning circuit into channel 2 of the ADC.

Measurements and Software Both pressure and intensity data may be taken “on the fly”
by polling channels 1 and 2 of the ADC input periodically as air is slowly readmitted to the
vacuum can containing the Fabry—Perot. Write a program to take the data and to produce
values of n; and intensity at intervals during a scan; produce a graph of these results. You
may wish to develop averaging schemes and/or attempt to process this data to produce
values of the Zeeman splittings directly.




