LabVIEW Introduction

Adapted from a presentation prepared by Imran Haider Malik of McGill University, Canada January 16, 2006 for their Measurement Lab. MECH262-MECH261 http://www.cim.mcgill.ca/~paul/LabviewTut.pdf

Outline

- Introduction
- LabVIEW Introduction
- Data Acquisition (DAQ)
- Features of LabVIEW
- Example .vi
- LabVIEW Interface
- Lab Equipment
- Goals of this UT LabVIEW Lab
- List of Typical Measurements
- Conclusions.

LabVIEW

- Product of National Instruments (NI)
- Software for Virtual Instrumentation (.vi)
- Data Acquisition (DAQ)
- Graphical Programming
- Data Storage and Analysis for wide range of applications

Data Acquisition (DAQ)

Time dependent Signal Recording (Acquisition)

Components of DAQ:

- Physical value typically converted to voltage
- Signal conditioning (e.g., a filter nowadays can be built-in with DAQ card)
- DAQ Card (can be USB)
- DAQ Software (DAQmx, LabVIEW)

Features of LabVIEW

- Design
 - Signal and Image Processing
 - Embedded System Programming
 - (PC, DSP, FPGA, Microcontroller)
 - Simulation and Prototyping
 - And more...
- Control
 - Automatic Controls and Dynamic Systems
 - Mechatronics and Robotics
 - And more...
- Measurements
 - Circuits and Electronics
 - Measurements and Instrumentation
 - And more...

Example

🔛 Exercise 2 - Acquire (Track A).vi Front Panel

Sound Signal Acquisition

LabVIEW Interface

Each Virtual Instrument (VI) has 2

Windows

Front Panel

- User Interface (UI)
 - Controls = Inputs
 - Indicators = Outputs

Block Diagram

- Graphical Code
 - Data travels on wires from controls through functions to indicators
 - Blocks execute by Dataflow

Front Panel

Block Diagram

- Help»Show Context Help, press the <Ctrl+H> keys
- Hover cursor over object to update window

Additional Help

- Right-Click on the VI icon and choose Help, or
- Choose "<u>Detailed Help</u>."
 on the context help window

Functions (and Structures) Palette

Tools Palette

X I

 Tools to operate and modify both front panel and block diagram objects

Automatic Selection Tool

Automatically chooses among the following tools:

Status Toolbar

수 🕹 🔘 🛙	13pt Application Font	-	 -0	₩ •	¢)-
Run	Button				

5	Run Button
₽ 🕹	Continuous Run Button
	Abort Execution

Additional Buttons on the Diagram Toolbar

Lab. Equipment

• Oscilloscope

Universal Measuring Instruments

Function Generator

Signal Generator

• Digital Voltmeter (DVM)

Goals of this week's Lab

- Introduce LabVIEW
- Experience DAQ
- Use of Electronic instruments:

Oscilloscope, Function Generator Digital Volt-meter (DVM).

Measurement Examples

- 1. Instrumentation Overview.
- 2. Introduction to LabVIEW.
- 3. Data Sampling.
- 4. Time Constant.
- 5. Stress and Strain.
- 6. Transducer Sensitivity (Part 1)
- 7. Transducer Sensitivity (Part 2) and Linearity
- 8. Pressure Transducer Calibration and Jet Profile
- 9. Thermocouples: Calibration and Manufacturing

What you should know about LabVIEW being a physicist

- Selection of DAQ system for an application
- Communicating with instruments (drivers, GPIB, other)
- Modularity of programming approaches: making your .vi's flexible and adaptable

References

• <u>www.ni.com</u>

 Using the oscilloscope <u>http://www.doctronics.co.uk/scope.htm</u>