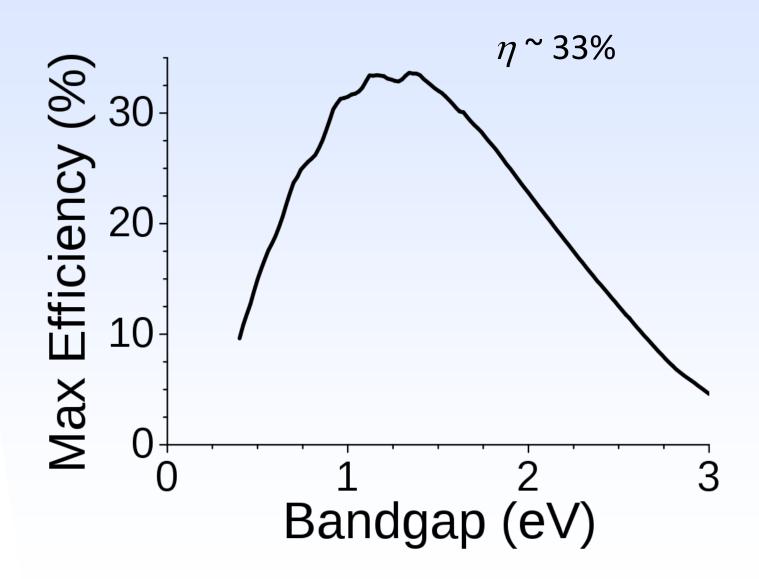
Thin Film Photovoltaics

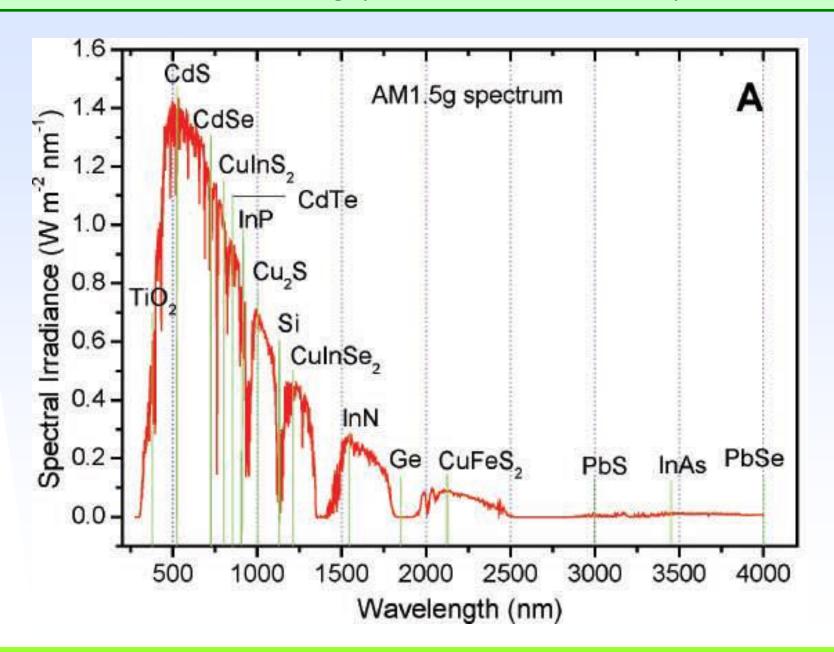
April 7, 2015
Prof. R. Ellingson, Department of Physics and Astronomy
The University of Toledo

Principles and Varieties of Solar Energy (PHYS 4400)

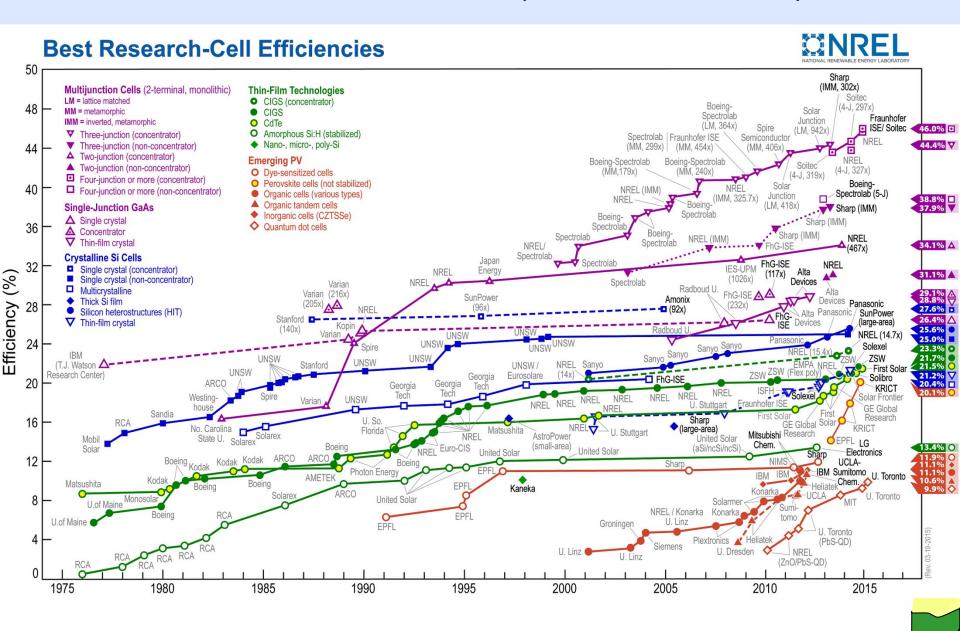
Learning more about the J-V behavior of a solar cell


- Intrinsic Carrier Concentration
- <u>Equilibrium Carrier Concentration</u>
 - Surface Recombination
 - Tandem Solar Cells
 - Characteristic Resistance
 - Effect of Parasitic Resistances
 - Series Resistance
 - Shunt Resistance
- Impact of Both Series and Shunt Resistance
 - Effect of Temperature
 - Effect of Light Intensity
 - Ideality factor
 - Thin Film PV

Requirements/conditions for constructing a valuable solar cell


A partial list...

- Efficiently absorb a large fraction of irradiance to optimize photogeneration of carriers
- Achieve charge separation, directing electrons and holes to different contacts (e.g., use doped materials for p-n junction)
- Demonstrate strongly-rectifying (diode) behavior
- Avoid excessive electron-hole recombination within the solar cell (maximize photocurrent)
- Maintain as much of the electric potential as possible (avoid resistive losses, and optimize energy band offsets)
- Resist/avoid degradation by air and water (seal the modules) i.e. achieve stability
- Do all of these things (a) with high yield, (b) inexpensively, and (c) produce at mass scale
- What else?


Getting everything right...

Semiconductor bandgaps relative to the solar spectrum

Record Cell Efficiencies (March 2014/2015)

Attained vs. attainable efficiencies

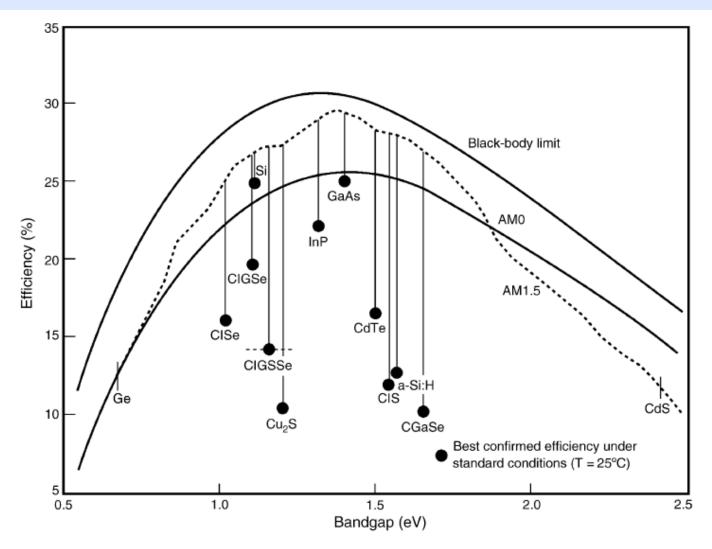


Fig. 3. Performance gaps between best device efficiencies in the laboratory and attainable efficiencies for several solar cell technologies.

L.L. Kazmerski / Journal of Electron Spectroscopy and Related Phenomena 150 (2006) 105–135

A look at the TF PV market

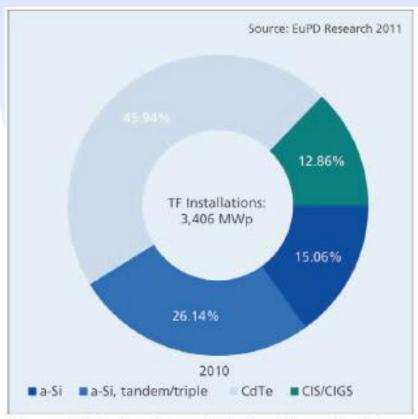


Figure 1. Market shares PV thin-film technologies 2011 (Source: EuPD Research)

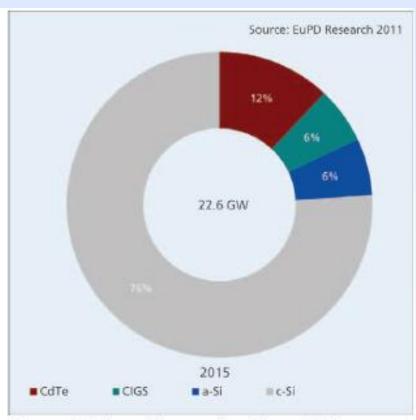
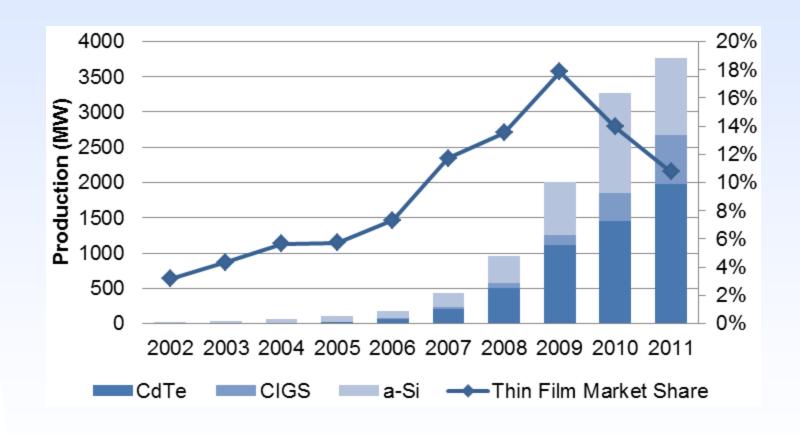
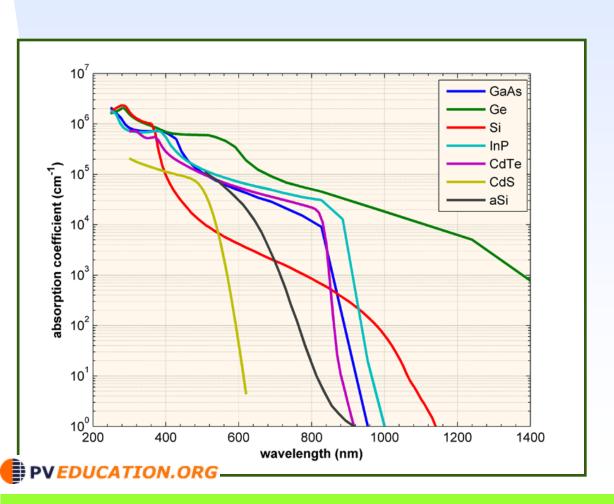



Figure 2. Photovoltaic market shares 2015
(Source: EuPD Research)

Commercial Thin Film Photovoltaics (2011)

What is Thin Film PV?

A straight-up comparison of light absorption in three different semiconductor absorbers used for PV -- c-Si, CIGS, and CdTe:


Material (t = 1 μm)	Band Gap Energy	Absorption coefficient, α (600 nm) in cm ⁻¹	% of 600 nm light absorbed in 1 μm film
c-Si	1.12	2.5×10^3	22
CIGS	1.2	6 x 10 ⁴	99.7
CdTe	1.5	6 x 10 ⁴	99.7
a-Si	1.7	3×10^4	95

Short answer – thin film PV utilizes direct-bandgap materials with strong absorption coefficient throughout the visible spectrum, which absorb a large fraction of sunlight for thicknesses on the order of 1 μ m.

Absorbing sunlight efficiently

What matters for absorption of sunlight to make a good solar cell?

High extinction coefficient, short absorption length, large absorption coefficient.

$$I = I_0 e^{-\alpha x}$$
$$I(\lambda) = I_0(\lambda) e^{-\alpha(\lambda)x}$$

Bandgap

Low **reflection** loss (can't convert reflected photons).

How do we measure the parameters in **bold**?

CIGS = CulnGaSe₂

Quaternary material; Substrate configuration;

http://upload.wikimedia.org/wikipedia/commons/d/d7/CIGSdevice.JPG

Attained vs. attainable open circuit photovoltage

Cell Type	E _g at RT (eV)	V _{OC} MAX (V)	V _{oc} (V)	V _{oc} loss (V)	V _{OC} /V _{OC} MAX (%)
SC-Si	1.12	0.84	0.71	0.13	85
GaAs	1.42	1.14	1.02	0.12	90
InP	1.28	1.00	0.88	0.12	88
CdTe	1.45	1.17	0.84	0.33	72
CIGS	1.14	0.86	0.72	0.14	84
a-Si	1.7	1.42	0.86	0.56	61
DSSC (black dye) (Red N719) (Red N3)	1.4 1.6 2.0	1.12 1.32 1.72	0.72 0.85 0.80	0.40 0.47 0.92	64 64 47
OPV	1.55	1.27	0.75	0.52	59

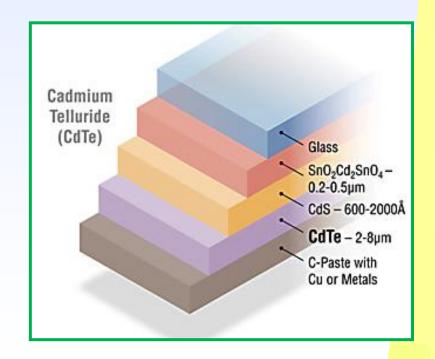
Attained vs. attainable short-circuit photocurrent

Cell Type	E _g at RT (eV)	J _{SC} ^{MAX} (mA/cm²)	J _{SC} (mA/cm²)	J _{SC} /J _{SC} ^{MAX} (%)
SC-Si	1.12	43.8	42.7	98
GaAs	1.42	32.0	28.5	89
InP	1.28	36.3	29.5	81
CdTe	1.45	30.8	25.9	84
CIGS	1.15	42	33.5	80
a-Si	1.7	22.4	17.5	78
DSSC (black dye) (Red N719) (Red N3)	1.4 1.6 2.0	33.3 25.5 14.4	20.5 17.7 9.2	62 70 64
OPV	1.55	26.9	14.7	55

Basic CdTe PV Device Architecture(s)

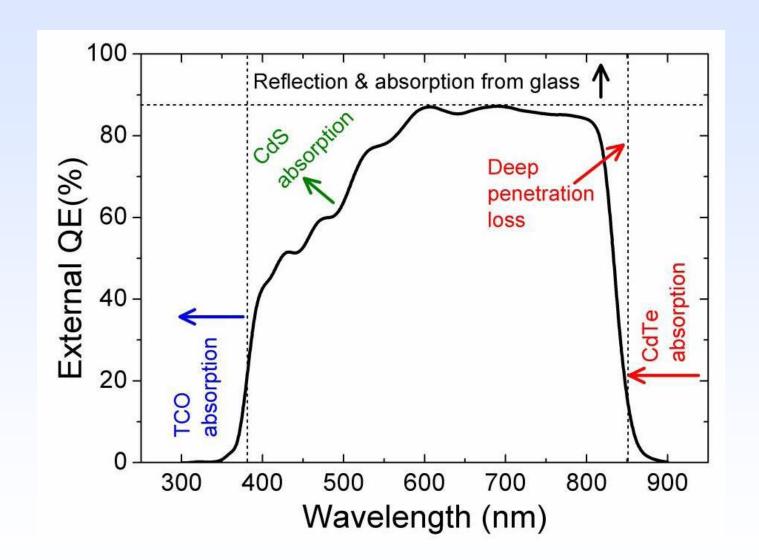
Glass substrate

ITO (low resistivity TCO)


SnO₂ (high resistivity TCO)

n-doped CdS (window layer)

p-doped CdTe (absorber)


Au or Ni-Al metal contact

"superstrate"

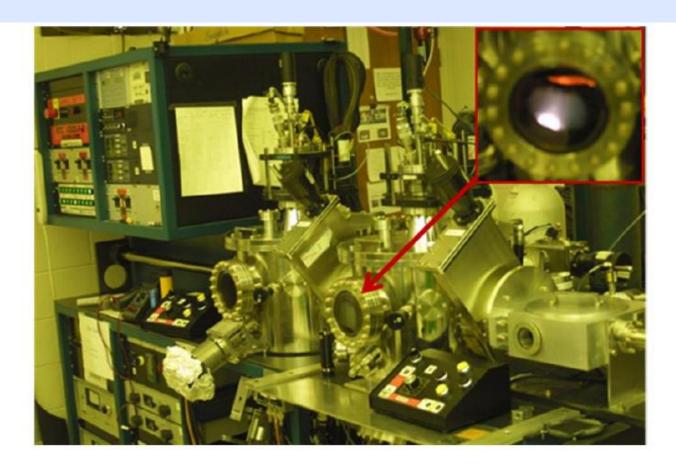
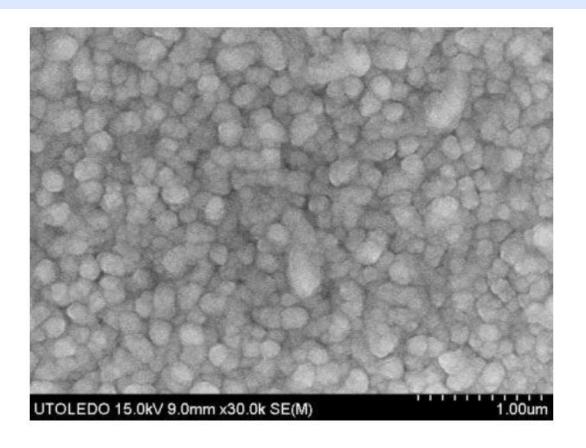
http://www.nrel.gov/pv/thinfilm.html

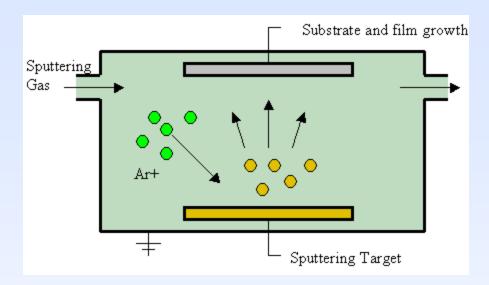
EQE for typical CdTe solar cell

TCO materials for used w/ CdTe solar cells

Materials	Resistivity	Transmission	Stability
SnO ₂ :F	$(5-7)\times 10^{-4} \Omega$ -cm	~80%	excellent
SnO ₂ :In ₂ O ₃	2.5×10 ⁻⁴ Ω-cm	~85%	good
In ₂ O ₃ :F	2.5×10^{-4} Ω -cm	~85%	good
In ₂ O ₃ :GeO ₂	2×10 ⁻⁴ Ω-cm	~85%	good
Cd ₂ SnO ₄	2×10 ⁻⁴ Ω-cm	>85%	fair
ZnO:Al ₂ O ₃	$(4-6)\times10^{-4}$ Ω -cm	>85%	fair
ZnO:In	8×10 ⁻⁴ Ω-cm	~85%	good

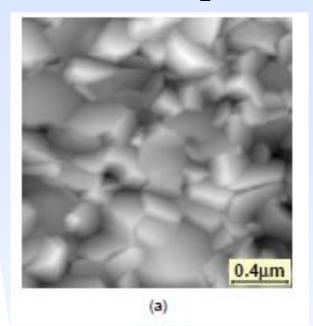
CdS and CdTe sputtering system

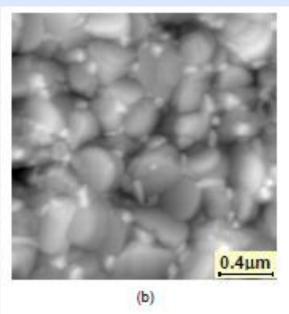



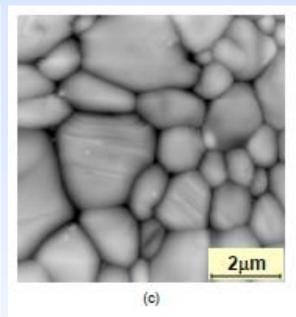

Figure 2-2. CdS/CdTe sputtering system designed by AJA International located at MH3023 in University of Toledo. [Inset shows CdTe plasma through the viewport of chamber B during sputter deposition. The CdTe deposition is going on the glass substrate which is face down and rotating continuously for uniform coating.]

Sputtered CdS film

Figure 1-14. Secondary electron micrograph of as grown CdS film sputtered on SnO₂:F coated glass substrate.


Sputter deposition




- Sputtered atoms have a wide range of energies;
- Ballistic atoms or ions can result in resputtering from thin film;
- Control of the atom energetic distribution can be accomplished through variation of chamber inert gas pressure (e.g., Ar);
- Note that CdTe sputters (and evaporates) congruently, i.e., as a CdTe molecule. This maintains very close 1:1 stoichiometry of the resulting film.

http://heraeus-targets.com/en/technology/ sputteringbasics/sputtering.aspx

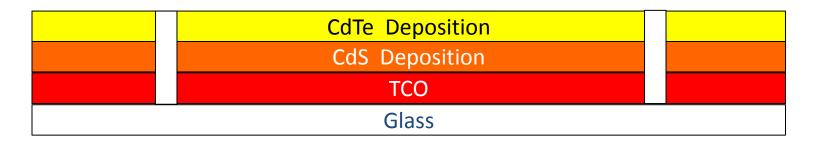
CdCl₂ treatment (recrystallization of CdTe)

PVD CdTe films: (a) untreated, (b) and (c) after CdCl2 heat treatment at 350° and 400°C, respectively.

Studies of Recrystallization of CdTe Thin Films After CdCl Treatment H.R. Moutinho, M.M. Al-Jassim, F.A. Abufoltuh, D.H. Levi, P.C. Dippo, R.G. Dhere, and L.L. Kazmerski Presented at the 26th IEEE Photovoltaic Specialists Conference, September 29—October 3, 1997, Anaheim, California

Effects of CdCl₂ treatment on as-deposited CdTe films

- Results in CdTe grain growth (especially w/ sputtered films and PVD-grown films, less so w/ CSS)
- Reduces lattice strain (also promotes grain growth)
- Increases minority carrier lifetime (~ x10), perhaps due to reduction in deep level defect densities within the bandgap.


CdTe module production and scribing steps

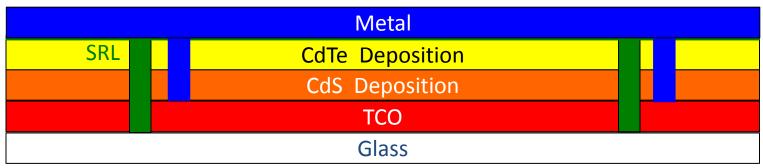
TC	
Gla	SS

Start with TCO Coated Glass

CdTe Deposition CdS Deposition TCO Glass

- Start with TCO Coated Glass
- Deposition 1 CdS
- Deposition 2 CdTe

- Start with TCO Coated Glass
- Deposition 1 CdS
- Deposition 2 CdTe
- Process 1 P1 1064 nm Scribe through TCO/CdS/CdTe


Note: All scribes from sunny side

SRL	CdTe Deposition
	CdS Deposition
	TCO
	Glass

- Start with TCO Coated Glass
- Deposition 1 CdS
- Deposition 2 CdTe
- Process 1 P1 1064 nm Scribe through TCO/CdS/CdTe
- Process 2 Shunt resistance layer

- Start with TCO Coated Glass
- Deposition 1 CdS
- Deposition 2 CdTe
- Process 1 P1 1064 nm Scribe through TCO/CdS/CdTe
- Process 2 Shunt resistance layer
- Process 3 P2 532 nm Scribe through CdS/CdTe

- Start with TCO Coated Glass
- Deposition 1 CdS
- Deposition 2 CdTe
- Process 1 P1 1064 nm Scribe through TCO/CdS/CdTe
- Process 2 Shunt resistance layer
- Process 3 P2 532 nm Scribe through CdS/CdTe
- Process 4 Cu treatment
- Process 5 Metallization

- Start with TCO Coated Glass
- Deposition 1 CdS
- Deposition 2 CdTe
- Process 1 P1 1064 nm Scribe through CdTe/CdS/TCO
- Process 2 Shunt resistance layer
- Process 3 P2 532 nm Scribe through CdTe/CdS
- Process 4 Cu treatment
- Process 5 Metallization
- Process 6 P3 532 nm Scribe through Metal/CdTe/CdS
- Process 7 Post Metal Heat Treatment

CdTe news for April 9, 2013

9:36AM First Solar sets CdTe module efficiency world record, launches Series 3 Black module: Co announced it set a new world record for cadmium-telluride (CdTe) photovoltaic (PV) module conversion efficiency, achieving a record 16.1% total area module efficiency in tests confirmed by the U.S. Department of Energy's National Renewable Energy Laboratory. The new record is a substantial increase over the prior record of 14.4% efficiency, which the co set in Jan 2012. Separately, First Solar also set a record for CdTe open circuit voltage (VOC), reaching 903.2 millivolts (mV) in NREL-certified testing. Co also launched a new evolution of its proven Series 3 thin-film PV module platform, the Series 3 Black.