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ABSTRACT: Because bifacial solar cells increase the power
generated per area, their market share is projected to increase
over the next decade. While silicon technologies have implemented
bifacial technology, little progress has occurred in bifacial thin film
(BTF) solar cells. Understanding the factors that limit performance
is critical to advancing BTF cells. We show that recombination at
the back interface has limited device performance of fabricated BTF
devices. Improved BTF performance will require decreasing
recombination at the back interface, through passivation or by
reducing downward band-bending at this interface. Increasing
carrier lifetimes improves performance, but increasing hole density
has little effect.
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With single junction photovoltaic (PV) device efficiencies
exceeding 25%,1 new solar cell architectures will be

needed to allow the power production per unit area to be
increased. One of the most promising and potentially
inexpensive methods to increase the power production per
unit area of single junction devices is to use a bifacial
configuration. This configuration allows for photons to enter
the absorber through both sides of the device, allowing
reflected and scattered light incident on the back surface to
boost the power output. Early measurements showed that
bifacial devices could produce 50% more power under certain
conditions.2 More recent studies show that mounting bifacial
modules on high albedo backgrounds can result in an energy
yield increase of ∼20−30%.3,4 On the basis of these benefits,
the International Technology Roadmap for Photovoltaics
estimates that bifacial devices will account for ∼40% of the
PV market by 2028.5

Due to the potential for a significant increase in energy yield,
there has been substantial interest in developing bifacial
devices. Most of this work has been on high efficiency
crystalline Si devices, which are now deployed in the market,6

but research into bifacial thin film (BTF) PV has begun.7−10 In
Si PV devices, a long bulk carrier lifetime (hundreds of
microseconds to milliseconds)11,12 and long diffusion length
coupled with low surface recombination velocities (SRVs; ∼10
cm s−1)12 means that carriers can reach the carrier selective
contacts before recombining, regardless of the direction of the
incoming light. When paired with the development of
transparent back contacts, bifacial Si devices efficiencies of
19.5−22% and 17−19% have been achieved when illuminated

through the front and rear of the device, respectively.13 These
values result in a bifaciality, defined as the ratio of efficiency
illuminated through the back to efficiency illuminated through
the front, of 85%.
Progress in improving the bifacial performance of poly-

crystalline thin film PV has been limited by relatively short
measured minority carrier lifetimes on the order of 1 ns14 and
high back surface recombination velocities on the order of
∼105 cm s−1.15 Under these conditions, the device efficiency is
low (5.0% for CdTe9 and 6.0% for CIGS8) when illuminated
through the back side (ηBack) even when the front-illuminated
efficiency (ηFront) is high. Recent improvements in the carrier
lifetime with Se incorporated into CdTe16,17 and companion
reports of diffusion lengths much greater than the typical
device thickness17 suggest that it should be possible to
fabricate high performance BTF CdTe devices. To date,
however, understanding of the deficiencies of bifacial thin film
devices has been limited to generalizations about absorber
thickness7,10 or analysis of the PV parameters.9 Recent
modeling indicates that a highly doped back buffer layer18 or
reduction in back surface recombination velocity (BSRV)8 can
lead to improved device performance for bifacial CIGS, but
there is still a lack of general understanding.
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Here, we use numerical simulations to determine critical
factors for device designs that will allow the simultaneous
optimization of both front side and back side illumination
performance. We evaluate the relative importance of carrier
lifetime, absorber dopant density, and absorber thickness and
consider approaches to reducing the recombination at the back
interface through either chemical passivation or the production
of a back surface field. Our findings can be used to guide real-
world efforts to push the efficiency of back side illuminated
thin film PV devices closer to that of monofacial devices,
thereby increasing bifacial performance and increasing the
overall power output.
Simulations were carried out using SCAPS-1D software

version 3.3.05.19 Following previous work,20 modeled devices
consisted of a 300 nm n-type transparent front contact, a 100
nm ZnxMg1−xO (ZMO) emitter layer, a CdTe layer of variable
thickness, a 100 nm back side buffer, and a transparent back
electrode. The ZMO composition was chosen to produce a
bandgap of 3.7 eV with a conduction band that was 0.2 eV
higher than the conduction band of CdTe (conduction band
offset of +0.2 eV). This configuration has been shown to
produce very low front surface recombination currents that can
be neglected for all conditions examined here.21,22 The back

buffer layer was chosen with a valence band 0.2 eV higher in
energy than the valence band of CdTe (valence band offset of
−0.2 eV) and a bandgap of 3.3 eV to be a transparent contact.
Typically, in BTF devices, an n-type transparent conducting
oxide (TCO) is deposited at the back of the device.7−10

However, implementation of a traditional n-type TCO on both
sides of the device is not permitted in the SCAPS software, so
the bands between the buffer and transparent back contact
were fixed to be flat. While the effects of the n-type TCO at the
back of a p-type absorber and buffer on the band diagram are
not well-understood in BTF devices, we expect this to induce
downward band-bending in the buffer at the buffer/TCO
interface. We have recently showed that if a low barrier for hole
flow can be maintained, this band-bending does not alter the
device performance.20 Recent measurements suggest that this
may be the case.23 The key material parameters, except where
noted, were obtained from the literature and are presented in
the SI. Following earlier work,22 we chose Gaussian type
midgap defect states with electron and hole carrier lifetimes
equal to each other with specific values noted in the text. The
back surface recombination velocity (BSRV) was held at 104

cm s−1 (an order of magnitude lower than typical values).
Other material parameters for the buffer layer were set to those

Figure 1. (a, b) Conduction band portion of the band diagrams for 4 and 2 μm absorber thickness devices, respectively, at various bias voltages.
Note that the back of the device is located on the left. (c, d) Corresponding current (J) and recombination current densities (Jr) as a function of
bias voltage.
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used for the CdTe. For back side illumination, the absorption
in the buffer layer was set to zero to ensure computational
convergence.
We first investigated the performance limitations of the best

reported BTF devices with back side illumination by
considering the band diagrams and the controlling recombi-
nation currents.9,10 To understand previously fabricated
devices, we used values that are representative of the materials
properties of those devices. The initial carrier lifetimes were set
to 1 ns.24 The CdTe hole density was set to 2 × 1014 cm−3, and
the back buffer hole density was 2 × 1014 cm−3, which
corresponds to an initial Fermi level offset (IFLO) of −0.2
eV.20 Note that because of the deep valence band position of
CdTe, it is difficult to make an Ohmic contact. We use IFLO
to characterize this contact. A negative IFLO results in
downward band-bending and the formation of a Schottky
junction. The typical back contact for CdTe devices results in a
negative IFLO. A positive IFLO results in upward band-
bending and would indicate an Ohmic contact. In addition,
higher positive IFLO indicates a more carrier selective contact.
The −0.2 eV IFLO value used here produces band-bending at
the rear contact which is similar to that found with a Te back
contact.25

Panels a and b of Figure 1 show the conduction band
portion of the simulated band diagrams at three different biases
for devices with absorber thicknesses of 4 and 2 μm,
respectively, while illuminated through the back side of the
device. Note that these thicknesses are representative of the
experimental bifacial CdTe absorber thicknesses.7,9,10 Panels c
and d show the corresponding current density and
recombination current density versus voltage (J−V and Jr−
V) plots, respectively. The behavior of the devices can be
understood by considering how the band-bending at the front
(emitter/absorber) and back (absorber/back buffer) junctions
(FJ and BJ, respectively) interact to form the overall band
diagrams, and how the band-bending and recombination
currents change with bias.
In the 4 μm device, the FJ depletion width extends from ∼2

to 4 μm (2 μm total) in the CdTe layer at zero bias. At a 0.3 or
0.6 V bias, the FJ depletion width decreases and extends from
2.5 or 3 μm, respectively, to 4 μm. The downward bending
depletion width at the BJ, on the other hand, extends from 0 to
1 μm and is nearly independent of the bias voltage. With back
side illumination, the penetration depth of the ultraviolet and
visible wavelength light is short, and a large fraction of the
carrier generation with AM1.5 irradiance occurs within ∼1 μm
of the back surface. With bias-independent band-bending near
the BJ, the carriers are swept in the wrong direction, and the
interface recombination current (JINT) is high, leading to a low
JSC. As the bias voltage increases, the band-bending at the FJ
decreases. This leads to a decrease in the number of carriers

that are collected at the FJ. Furthermore, the flattening of the
bands with increasing bias causes the Shockley−Reed−Hall
(SRH) recombination current density (JSRH) to turn-on
smoothly over a wide voltage range. This smooth, as opposed
to abrupt, increase in JSRH with bias results in a low fill factor
(FF). In this case, the JINT remains higher than JSRH at all
biases.
For the 2 μm device, the FJ and BJ are close enough that

they interact to significantly affect the overall band diagram.
Interestingly, at zero bias, there is no BJ depletion region. This
gives rise to a much higher JSC. As with the 4 μm absorber case,
increasing the bias reduces the band-bending at the FJ. This
allows a downward bending depletion region at the BJ to begin
to emerge. This results in a bias-dependent increase in the back
surface JINT and, thus, a low FF. Interestingly, JINT is lower than
JSRH until ∼550 mV, but ∼1.5 times larger by VOC.
To improve the device performance during back side

illumination, it is clear that the back interface recombination
needs to be reduced. Productive strategies could be similar to
those employed for improving the front side performance of
CdTe devices16 and other thin film PV materials,26,27 which
typically involve either chemical passivation of defects28 or
modification of the surface electric field and the related band-
bending.11

Considering chemical passivation of the back interface first,
we examined the effect of decreasing the back surface
recombination velocity (BSRV) from 104 to 100 cm s−1 for
pCdTe = 2 × 1014 cm−3. Again, we considered both 4 and 2 μm
thick absorber layers, but in this case the carrier lifetimes were
increased to 32 ns to be closer to recently measured values.14,16

Note that the increased lifetime accounts for suppression of
bulk defect states as well as improved passivation of the grain
boundaries in the polycrystalline absorber layer. Table 1 shows
the resultant simulated PV parameters and the bifaciality
metric (ηBack/ηFront). As expected, reducing the BSRV results in
lower recombination at this interface, leading to increases in
both JSC and FF in the 4 μm device, and an increase in the FF
in the 2 μm device. It is surprising, however, that the bifaciality
of the 4 μm device does not reach 1. This is due to the fact that
the downward bending depletion region exists at the BJ for all
biases. Thus, carriers generated near the BJ cannot reach the
front of the device before recombining through the SRH
mechanism, even at zero bias. For a 2 μm device, on the other
hand, there is no depletion region at the BJ at zero bias. As a
result, JINT is low, and JSC is high for all values of BSRV. In the
thin absorber case, reducing the BSRV leads to improved FF.
Interestingly, the bifaciality approaches 1 as the BSRV is
reduced to 102 cm s−1. In both cases, reducing the BSRV to
values lower than 101 cm s−1 does not further improve the
device performance because JINT is already an order of
magnitude lower that JSRH (SI).

Table 1. Back-Illuminated PV Parameters for Two Absorber Thicknesses as a Function of Back Surface Recombination
Velocity (BSRV)a

4 μm 2 μm

BSRV, cm s−1 VOC, mmV JSC, mA cm−2 FF % eff % bifac VOC, mV JSC, mA cm−2 FF % eff % bifac

104 751 2.3 44.3 0.8 0.04 755 28.2 51.5 11.0 0.6
103 813 11.1 49.2 4.4 0.22 820 28.6 68.6 16.1 0.84
102 893 23.2 66.9 13.9 0.69 905 28.6 75.2 19.5 0.98
101 924 25.8 71.9 17.2 0.85 943 28.6 75.6 20.4 1
100 929 26.1 72.5 17.6 0.87 949 28.6 75.6 20.5 1

aThe bifaciality (bifac) is defined as efficiency illuminated through the back divided by efficiency illuminated through the front.
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Band-bending can also be modified by locating fixed charge
at the back buffer layer11 or, more generally, by changing the
alignment of the noninteracting initial Fermi level offset

(IFLO) between the absorber and buffer.20 (See SI for how
fixed charges relate to IFLO.) Figure 2 shows contour plots of
the back-illuminated PV parameters as a function of the IFLO

Figure 2. Contour plots of the back-illuminated PV parameters for devices of varying thickness as a function of initial Fermi level offset (IFLO).
The carrier lifetime was maintained at 32 ns; the BSRV was 1 × 104 cm s−1, and pCdTe was 2 × 1014 cm−3.

Figure 3. Contour plots of the back-illuminated efficiency as a function of absorber hole density and carrier lifetime for absorber thicknesses, (a−c)
2 μm and (d−f) 4 μm, and varying back interface conditions: (a, d) negative IFLO, BSRV = 1 × 104 cm s−1; (b, e) negative IFLO, BSRV = 1 × 101

cm s−1; and (c, f) positive IFLO, BSRV = 1 × 104 cm s−1.
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and the absorber thickness. The data for devices illuminated
through the front interface and the ratio of front/back-
illumination performance are shown in the SI. The JSC
decreases with increasing thickness for negative values of the
IFLO because the BJ controls the performance. On the other
hand, when the IFLO is positive, there is upward band-bending
at the BJ and JSC is not strongly affected by thickness. In
general, thinner CdTe devices tend to produce higher ηBack for
all IFLOs. This is in contrast to devices illuminated through
the front side when the IFLO is negative. When this is the case,
the BJ and FJ interact (see Figure 1) which reduces the overall
band-bending in the device and results in lower VOC and ηFront.
As the absorber thickness increases, the interaction between
the FJ and BJ decreases and becomes negligible ∼3.5 μm.
However, devices with proper band-bending (IFLO > 0.05 eV)
perform well for both thicknesses, and the bifaciality
approaches unity.
Reducing the recombination at the back of the device by

passivation or by creating preferred band-bending is critical for
high efficiency back side illuminated devices, but other
parameters are important as well.29 Figure 3 shows contour
plots of the efficiency as a function of CdTe hole density and
carrier lifetime for 2 and 4 μm devices illuminated through the
back side for various back interface conditions. The
corresponding PV parameters are shown in the SI. When
there is a bad BJ (negative IFLO and BSRV = 1 × 104 cm-s−1;
Figure 3a,d), the devices are back interface limited. For the 2
μm device, the efficiencies are higher at the lower hole density
values because the FJ depletion region extends to the back of
the device under these conditions and the current collection
can be effective. However, when there are distinct FJ and BJ
depletion regions, carriers recombine at the back interface
resulting in poor current collection, and the efficiency is low.
This condition is found when the hole density is high in the 2
μm devices and occurs for all values of hole density in the 4 μm
devices.

When the BSRV is low (10 cm s−1; Figure 3b,e) or the
bands are bent upward at the back interface (positive IFLO;
Figure 3c,f), the back side performance is no longer limited by
the back interface. Increasing the lifetime leads to a higher bias
onset for SRH recombination and higher efficiency, while
increasing the hole density has little effect on the back side
performance in these cases. Interestingly, when illuminated
through the back side, the 2 μm devices have higher efficiency
than the 4 μm devices at a given doping level and lifetime, but
the opposite is true when devices are illuminated through the
front side. This suggests that there may be an optimum
absorber thickness for a BTF device.
To provide some insight, we considered a device operating

on a background surface with an albedo of 15%, and summed
the relative front side and back side illumination efficiencies to
calculate a bifacial efficiency (ηBi = ηFront(at 1 sun) + ηBack(at
15% of 1 sun)). Note that the back side illumination of bifacial
devices is significantly lower than the 1 sun value used for all
the simulations above. Even at the low intensity, the back side
illuminated JV curves generated here follow the familiar pattern
for reduced intensity: linear reduction in JSC and logarithmic
reduction in VOC. Figure 4 shows the bifacial efficiency as a
function of absorber thickness and BSRV, lifetime, hole
density, and IFLO. Note that when these parameters were
not specifically varied, they were fixed to 104 cm/s, 32 ns, 2 ×
1014 cm−3, and −0.2 eV, respectively, indicating a poor back
interface.
Figure 4 illustrates three main points. First, when the back

interface is improved through reduced BSRV (Figure 4a) or
increased IFLO (Figure 4d), a thinner absorber produces a
higher efficiency BTF device. Second, for any given carrier
lifetime greater than ∼20 ns (Figure 4b), the bifacial efficiency
is high for the 2 μm absorber, decreases until the absorber
thickness is ∼3 μm, and then increases again, with the thinnest
devices having the highest bifacial efficiency. Third, when the
absorber hole density is high (Figure 4c), the BTF device
performance is dictated by the front-illuminated performance.

Figure 4. Contour plots of bifacial efficiency as a function of thickness and (a) BSRV, (b) lifetime, (c) CdTe hole density, and (d) IFLO. When not
varied, the following conditions applied: the BSRV was set to 104 cm/s; the carrier lifetime was set to 32 ns; the CdTe hole density was set to 2 ×
1014 cm−3; and the IFLO was set to −0.2 eV.
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These results indicate that when the recombination at the BJ is
low, thinner BTF devices can perform better than thick
devices.

■ CONCLUSIONS
Using numerical simulations, we showed that BTF devices
fabricated to date have been limited by recombination at the
back interface. Improvement in the bifacial performance of thin
film devices will require improving the back interface through
either passivation and/or by reducing the downward band-
bending at this interface. We also showed that back side
illuminated devices depend strongly on doping density when
the back interface is bad but depend strongly on the carrier
lifetimes and weakly on absorber hole density when the back
interface is good. Finally, we showed that thinner BTF devices
may perform better than thicker when the absorber doping
density is low or the back interface recombination can be
reduced through passivation or decreases downward band-
bending at the current carrier lifetimes.
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