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Effects of short-range order on phase equilibria and opto-electronic 
properties of ternary alloy ZnxCd1-xTe 
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A B S T R A C T   

We employ first principles methods based on density functional theory and beyond to study ZnxCd1-xTe, 
0 ≤ x ≤ 1, alloys in the zinc blende (B3) crystal structure. Cluster Expansion and Monte Carlo formalisms were 
deployed to provide a phase diagram determining consolute temperature of 387 K at 40% Zn concentration. 
Opto-electronic properties are computed with the hybrid HSE06 functional for disordered ZnxCd1-xTe alloys, 
which were simulated using special quasi-random structures. Bowing effects in the bandgap and effective carrier 
masses were observed in alloying which can be attributed to local geometrical distortions as portrayed by bond 
length distributions. Downward bowing in the electronic bandgap will be beneficial in photovoltaic applications 
through increased net photocurrent. Absorption coefficients show robust absorption in ZnxCd1-xTe as indicated 
by substantial optical absorption throughout all Zn concentrations, aided by low reflectivity that ensures a high 
absorption. Presence of short-range order in Zn0.25Cd0.75Te was observed through clustering and anti-clustering 
among different cationic species of Zn and Cd. It has a value of 0.11 at 1000 K compared to − 0.79 at 400 K. The 
bandgap of Zn0.25Cd0.75Te at 1000 K was found to be slightly higher, 0.05 eV, than at 400 K, consistent with the 
value of short-range order. Thus, short-range order and possibly composition can be used in the design and 
synthesis of the appropriate solar cell, thereby improving the performance in this system.   

1. Introduction 

CdTe based solar cells are the most successful thin film technology 
commercially due to their record high efficiency of 22.1% [1], reliability 
and low-cost production methods [2,3]. However, this efficiency value is 
still far from the Shockley-Queisser (SQ) limit of 30% [4]. The 
open-circuit voltage (VOC), one of the factors contributing to efficiency, 
obtained so far is 880 mV, which is only 76.1% of the SQ limit of 1157 
mV [1,4]. In contrast, the VOC of some other representative materials 
such as GaAs have been observed to be 97.7% of the SQ limit [5]. In 
order to ascend the SQ curve for a better VOC, this issue has been 
addressed by tuning the bandgap of CdTe by alloying with CdS [6–8], 
CdSe [9–11] or ZnTe [2,12–16]. Out of these options, the lattice 
mismatch in between CdS and CdTe is about 10% [7] in comparison to 
CdSe and ZnTe, where both have around 6% lattice mismatch with CdTe 
[17,18]. Such a large lattice mismatch in CdS causes low dopant solu-
bility which in turn increases carrier recombination rates due to a high 
defect density [19,20]. Furthermore, parasitic absorption in CdS in 
wavelength range 300–500 nm reduces net photo-current [8]. 

Moreover, the lower VOC in CdTe is also attributed towards lower carrier 
lifetime [21–23]. The carrier lifetimes are curbed by recombination 
brought about by the defects [24,25], which frequently exist in high 
proportion at the front- and back-contact interfaces necessary to collect 
electrons and holes. Alloying CdTe with CdSe or ZnTe has been seen as a 
defect minimizing process and subsequent increase in carrier lifetime, 
radiative efficiency and short-circuit current density [10,11,26]. Also, as 
CdSe and CdS are thermodynamically synthesized in either zinc blende 
or wurtzite phases [27], the synthesis of ZnTe and its alloys with CdTe 
only in zinc blende structure [13] poses an ease in the synthesis process. 
All these efforts in reaching the SQ limit has stalled in recent years 
because the SQ limit mainly adheres to radiative recombination losses, 
whereas electrical and optical losses are primarily diminishing the po-
tential [28]. Instead, tandem solar cell configurations are seen to surpass 
SQ limit of single-junction solar cells [28]. Thus, ZnxCd1-xTe has been 
used in a tandem configuration also because it has a tunable bandgap 
from 1.4 eV to 2.26 eV [14]. Besides this, inserting a wide bandgap 
material between the absorber layer and the metal contact has delivered 
in an increase in efficiency [29–31]. Especially, ZnxCd1-xTe with higher 
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Zn concentrations can be used as a wide bandgap material. Its negligible 
valence band discontinuity with respect to CdTe does not resist hole 
transfer whereas a large conduction band offset, in principle, reflects 
electrons back toward the front contact to CdTe, minimizing minority 
carrier recombination losses at metal-back contact interface [32,33]. 
Besides solar cells, the ZnxCd1-xTe alloy system has seen usage in 
switching devices, light emitting diodes, X-ray detectors, γ-ray detectors, 
photorefractive gratings, etc. [34–36]. 

Significant attention has been provided both theoretically [12,37, 
38] and experimentally [2,14,15] to comprehend the properties and 
applications of the ZnxCd1-xTe system. However, a panoptic computa-
tional view of its structure emphasizing especially on the property of the 
disordered alloy and its effects on the opto-electronic properties has 
been missing. Therefore, in this study, we have investigated detailed 
structural, energetic, thermodynamic, and opto-electronic properties of 
ZnxCd1-xTe alloy system. Using Cluster Expansion (CE) [39–42] and 
Monte Carlo (MC) [43–47] formalisms, we have characterized phase 
stability of ZnxCd1-xTe determining that the solubility can be achieved at 
40% Zn concentration above 387 K temperature. Miscibility gap below 
this temperature has been attributed to the strain due to the accom-
modation of two different atoms Zn and Cd of differing covalent radii 
shown by the bond length distribution. This bond length variation also 
causes a downward bowing behavior in bandgap, thereby reducing the 
bandgap values in the intermediate members of the alloy. The reduction 
in their values meets the SQ limit and causes an increment in photo-
voltaic efficiency. Good agreement of our calculated values with the 
experimental data is observed. The analysis of short-range order gives us 
some insight into the bandgap engineering of the material. Sustained 
absorption and low optical reflectivity make ZnxCd1-xTe alloy system a 
better solar material. 

2. Computational methods 

All the density functional theory (DFT) calculations were performed 
using the Vienna Ab initio Simulation Package (VASP) [48–51] with 
Projector Augmented Wave (PAW) method [52,53] and Generalized 
Gradient Approximation (GGA) exchange-correlation functional pre-
scribed by Perdew-Burke-Ernzerhof (PBE) [54,55]. PAW PBE pseudo-
potentials from the VASP library [48–51], including only the outer-core 
electrons as valence electrons, were used for Zn, Cd and Te. In the 
convergence trial with respect to energy, a cutoff of 500 eV was selected 
to be used for the plane-wave basis set [56–59]. Calculations were 
carried out on Γ-centered k-point meshes comprising of 4000 k-points 
per reciprocal atom (KPPRA) [60–64]. Electronic minimizations with a 
convergence criterion of 10− 6 eV/atom were performed using Gaussian 
smearing of width 0.05 eV [65–69]. Initial crystal structures of materials 
used in this work were taken from the Materials Project [70] and 
geometrically optimized until forces acting on each atom were less than 
0.01 eV/Å as mentioned in earlier work [71–76]. 

Accurate ground state energies of the reactants and products are 
calculated, using high precision static calculations, in order to compute 
formation energy [77–80]. Formation energy per formula unit of 
ZnxCd1-xTe is calculated as:  

ΔEf(x) = E(ZnxCd1-xTe) – xE(Zn) – (1-x)E(Cd) – E(Te)                        (1) 

where E(Zn), E(Cd), E(Te) are the ground state energies of zinc (Space 
Group: P63/mmc), cadmium (Space Group: P63/mmc) and tellurium 
(Space Group: P3121) in solid states, respectively. 

Formation energy landscapes and phase diagrams of ZnTe–CdTe 
were calculated using cluster expansion formalism [81] deploying MIT 
Ab initio Phase Stability (maps) code from the Alloy Theoretic Auto-
mated Toolkit (ATAT) [82–85]. Stiffness versus length relationships [86, 
87] were utilized to calculate vibrational contributions to the free en-
ergy among 5 unique structures in the set enumerated by cluster 
expansion. For each structure, perturbations of magnitude 0.2 Å at 3 

separate volumes were tested to obtain dynamical matrices, phonon 
spectra, and vibrational free energies. This information obtained using 
the fitsvsl and svsl codes in ATAT [82–85] was used in modifying the 
corresponding phase boundaries. Special Quasirandom Structures 
(SQSs) [88], utilized to calculate random Zn/Cd occupation occurring 
above the predicted consolute temperature, were generated using the 
sqs2tdb code within ATAT [82–85]. To simulate credible random con-
figurations, ZnxCd1-xTe SQSs were constructed from 2 × 2× 2 supercells 
of the conventional zinc blende (B3) unit cells at concentrations of x =
0.25, 0.50, and 0.75. 

Due to the self-interaction error, bandgaps and absorption onsets are 
underestimated by standard exchange-correlation functionals, e.g., GGA 
and local density approximation (LDA) [89,90]. Hence, we employed 
the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06) [91–93] to 
calculate the optoelectronic properties of CdSexTe1-x. The HSE06 func-
tional including 25% of the exact exchange from Hartree-Fock theory 
along with 75% of the exchange from GGA has been shown to give 
significantly improved agreement with experiment for semiconductors 
and insulators [94,95]. Using this method, for which the exact exchange 
was treated on a coarser grid of 2000 KPPRA to conserve computational 
resources [9,96], we calculated the electronic density of states (DOS) 
and frequency-dependent complex dielectric function (ε1 + iε2) for each 
compound, including both end members and SQSs. From the latter 
values, derived optical properties such as absorption coefficient and 
reflectivity were determined implementing the corresponding modules 
in pymatgen [97]. Such derived absorption coefficient is utilized to 
calculate Urbach energy [98,99]. To gain further insight into the opto-
electronic properties, effective masses (m*) of electrons and holes were 
calculated using the BoltzTrap2 [100,101] package where we have 
considered the calculations in room temperature (300 K) with constant 
relaxation time approximated to be 10− 14 s. Besides the single band at 
both Valence Band Maximum (VBM) and Conduction Band Minimum 
(CBM), other bands or band-branches within 1.5 eV of range on either 
side of the mid-bandgap were also considered for interpolation of bands 
while calculating the effective masses. The calculated effective masses 
are further utilized to calculate charge carrier mobilities [102], where 
the relaxation time is approximated to be 10− 14 s. Along with dielectric 
constant at high-frequency limit (ε∞), we have again utilized effective 
masses to compute exciton binding energy [102,103]. 

To investigate short-range order (SRO) effects occurring in the Zn/Cd 
sublattice of ZnxCd1-xTe structures for which no long-range order exists, 
we focus on the relevant concentration of x = 0.25. Here, Monte Carlo 
simulations are performed on 1728-atom supercells using the Easy 
Monte Carlo Code (emc2) within ATAT [82–85]. As the consolute 
temperature of 387 K is predicted including the vibrational contribution 
to the phase equilibrium, we test Zn0.25Cd0.75Te at temperatures ranging 
from 400 K to 1000 K, in steps of 50 K. We engage two techniques of 
analysis to determine the degree of short-range order present within 
each structure. First, we compare the distribution of Zn–Cd coordination 
values, occurring throughout all sites at 400 K and 1000 K, with the 
corresponding values of a completely disordered configuration. Sec-
ondly, we define the following short-range order parameter for Zn–Cd 
pairs [104]: 

σ(T)= 1 −
[(

1 − NZn− Cd(T)
/

NZn− Cd
random

) / (
1 − NZn− Cd

ordered

/
NZn− Cd

random

)]
(2)  

where NZn− Cd, NZn− Cd
ordered, and NZn− Cd

random represent the number of Zn–Cd bonds 
in the configuration simulated at some intermediate temperatures (T =
400 K, 1000 K), the ordered configuration (with each Te coordinated to 
an equal number of Zn and Cd atoms) at absolute zero temperature, and 
the completely random configuration approached at very high temper-
atures (T≫1000  K) in Zn0.25Cd0.75Te. Here, the positive and negative 
values of σ (max. +1 or − 1) correspond to additional or reduced Zn–Cd 
bonds relative to the random limit, and hence a value of zero implies 
complete disorder. 

To provide further insight into electronic structure, we have 
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performed calculations of Crystal Orbital Hamiltonian Populations 
(COHP) and effective charges using the LOBSTER package [105–108] 
and Bader analysis [109–112] respectively. 

3. Results 

3.1. Properties of cation-disordered ZnxCd1-xTe 

ZnTe and CdTe in the solid state are most stable in B3 crystal 
structure as also their alloys ZnxCd1-xTe [13]. The end members, ZnTe 
and CdTe, of the alloy ZnxCd1-xTe have cations in 4a and anions in 4d 
Wyckoff positions. There are two different atoms in the cationic sub-
lattice of 4a Wyckoff positions. Thus, the intermediate members of the 
alloy have cationic disorder. The SQSs of cation disordered supercells 
have 64 atoms in each cell for the intermediate members of the alloy 
ZnxCd1-xTe for x = 0.25, 0.50 and 0.75. The coordination number is 4 as 
observed ubiquitously in B3 structure with tetrahedral geometry and 
ABCABC … layer stacking. Since we want to study various properties of 
cation-disordered ZnxCd1-xTe as a function of concentration, let’s first 
define a bowing parameter (δp). It helps us to understand the deviation 
from linearity for any physical quantity (p) such as, lattice constant (a), 
bandgap (Eg), effective mass (m*), or others, as [113]: 

pmix(xZn)= xZnpZnTe +(1 − xZn)pCdTe − xZn(1 − xZn)δp, (3)  

where xZn is the percentage of Zn in the alloy and, pmix, pZnTe and pCdTe are 
values of the physical quantity associated with resultant alloy, ZnTe and 
CdTe respectively. 

Table S1 displays calculated equilibrium lattice constant, volume, 
and formation energy of the ZnxCd1-xTe alloy system. Our computed 
lattice constant matches closely with previous theoretical [114,115] and 
experimental [116–118] work. We have found that the bowing param-
eter for lattice constant δa is − 0.06 Å, using Eq. (3) with p = a. Such a 
small bowing parameter suggests that the lattice constant for this system 
roughly follows Vegard’s law [119]. Further, the unit cell volumes are 
found to decrease with average slopes of 13.52 Å3 per formula unit per 
concentration (x). This contraction in volume can be attributed to the 
increment in Zn concentration whose volume is smaller than Cd in this 
tetrahedrally coordinated covalent environment [120]. Also, the bowing 
parameter for formation energy δΔEf is − 78.08 meV, obtained using Eq. 
(3) with p = ΔEf. Thus, there is an increase in formation energy for the 
intermediate members of the alloy. This endothermicity is because of the 
strain in accommodating two different atoms Zn and Cd of different 
covalent radii, 130.4 p.m. and 148.2 p.m. respectively. The effect is 
more pronounced in Zn0.50Cd0.50Te [121]. Moreover, these results of 
formation energy and lattice constants have been graphically displayed 
in Figure S1, where there is a clear bowing in formation energy whereas 
the lattice constant curve is nearly a straight line. 

To understand the internal geometrical structure in the alloy, we 
have presented the first nearest neighbor bond length distribution in 
Figure S2. The anticipated distortion in the cation-Te tetrahedra due to 
the cation disorder has been exhibited by the corresponding deviations 
in the ideal bond lengths. Particularly, the first nearest neighbor bond 
lengths of attractive type, viz. Cd–Te and Zn–Te are calculated to be 
2.87 Å and 2.68 Å respectively in the end members. However, all the 
Cd–Te median values (shown by red lines in the box and whisker plots in 
Figure S2) in all the intermediate members are lower than in the end 
member CdTe. Similarly, all the Zn–Te median values in all the inter-
mediate members are higher than in the end member ZnTe. In the case of 
x = 0.50, our calculated values of the median bond lengths in Cd–Te and 
Zn–Te of respectively 2.85 Å and 2.70 Å are matching closely with the 
experimental results of respectively 2.78 Å and 2.66 Å [122]. Also, the 
distribution of these (Cd–Te and Zn–Te) bond lengths is nearly 0.07 Å 
wide in all the intermediate members. Similarly, the other nearest 
neighbor bond lengths of repulsive type, viz. Zn–Zn, Zn–Cd, Cd–Cd and 
Te–Te have much wider distribution (0.30–0.53) Å. Moreover, the first 

nearest bond lengths Zn–Zn and Te–Te in ZnTe end member are both 
same and equal to 4.37 Å, whereas Cd–Cd and Te–Te in CdTe end 
member are both same and equal to 4.86 Å. Similar to the effect 
observed in the case of Cd–Te and Zn–Te bond lengths as discussed 
earlier in this paragraph, the Zn–Zn median bond lengths decreased 
whereas Cd–Cd median bond lengths increased in all the intermediate 
alloys. The Te–Te and Zn–Cd first nearest median bond lengths are 
distributed throughout the bond lengths of Cd–Cd, Zn–Zn and Te–Te in 
the end members. Although all the participating atoms in the bond 
length pairs discussed are the same in either end members or the in-
termediate members of the alloys, the altercation in the bond lengths 
can be correlated to the presence of the type of cation in the nearest 
tetrahedra or the second and further nearest neighbor cation type. The 
increment of zinc in the neighborhood created an increase in the Zn–Zn 
and Zn–Te bond lengths whereas reduction in the Cd–Cd and Cd–Te 
bond lengths. This is because the difference in electronegativity in Zn–Te 
bond is lower than in Cd-Te [123] which makes the former pair of bonds 
weaker than the latter. Thus, Cd–Te becomes more attractive in the in-
termediate members and causes the bond length to shrink whereas 
Zn–Te bond length increases due to lesser bonding strength and occupies 
the vacant space in the neighborhood created by the shrinkage of Cd–Te 
tetrahedra. Furthermore, the distortion is the highest in Zn0.50Cd0.50Te 
and all the bond lengths are much widely distributed, owing to the strain 
due to two differing cation sizes [121] as discussed in the previous 
paragraph and a perfectly random distribution of the tetrahedra. 
Therefore, there is a stark variation in the bond lengths when compared 
to their pairs in the end members. Hence, we can say that the disorder 
caused such difference in the bond lengths in the alloys. Further impli-
cations of the varying bond lengths in opto-electronic properties and 
short-range order of the material will be discussed later in this section 
and section 3.3 respectively. 

The disorder in the cationic positions of ZnxCd1-xTe alloy also has a 
major impact on its electronic properties. The exact values of bandgaps 
of ZnxCd1-xTe, are reported in Table S2. The values calculated using 
HSEO6 pseudopotential for the end members CdTe and ZnTe are 1.54 eV 
and 2.39 eV which closely match the experimental values of 1.50 eV 
[124] and 2.39 eV [125,126] respectively in contrast with earlier 
theoretical work. All the bandgaps for the alloy members calculated are 
direct in nature at the Γ(0,0,0) k-point. Our more accurate match with 
experimental results may be attributed to the difference in pseudopo-
tentials used in earlier theoretical work. Reshak et al. obtained the 
bandgap of 1.31 eV for CdTe using Engel-Vosko (EV)-GGA [127] 
whereas Huang et al. obtained the bandgap of 2.24 eV for ZnTe using 
LDA [114] pseudopotentials. Our results calculated using GGA are also 
provided for comparison which exhibit similar mismatch with experi-
mental results. 

A bowing effect is present in the values of bandgaps of intermediate 
members of ZnxCd1-xTe which has been graphically displayed in Fig. 1a. 
The bowing parameter of bandgaps δEg is 1.63 eV, obtained using Eq. (3) 
with p = Eg. This bowing trend can be attributed to the local distortions 
arising in the disordered solid solution [128]. We have already analyzed 
the distribution of the bond length (Figure S2) in the alloy due to the 
differing cation types in the third paragraph of this section. Due to this 
bond length distribution, charge distribution segregates correspond-
ingly among the alloy bonds that initiates the bowing behavior of the 
bandgaps [129]. The downward bowing effect brings the bandgap to a 
minimum of 1.49 eV in Zn0.25Cd0.75Te. As this value of the bandgap is 
near to the ideal value of 1.4 eV for a photovoltaic absorber according to 
the SQ limit [4], Zn0.25Cd0.75Te (shown in Fig. 2) is proposed to be 
beneficial for optimal efficiency of energy absorption. Also, since the 
bandgap of ZnxCd1-xTe alloy system spans from infrared to the visible 
range of the electromagnetic-spectrum, the other members of the 
ZnxCd1-xTe alloy system can be used as graded absorber layers in order 
to capture the entire solar spectrum. Besides the dependence of bandgap 
on the concentration of Zn, quantum confinement may be used as 
another tuning parameter, as the bandgap has been observed to vary 
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with respect to the thickness of the thin films of ZnxCd1-xTe deposited at 
various substrates as described by Chander et al. [14,15]. 

Another electronic property affected by alloying is the carrier 
effective mass (m*) which influences the photo-current and ultimately 
the efficiency of the solar cells. The electron effective masses (m*

e) for the 
end members CdTe and ZnTe are calculated to be 1.33 mo and 1.20 mo, 
where mo is the electron rest mass. There is an upward bowing in m*

e with 
the bowing parameter δm*

e 
to be − 1.69 mo. Similarly, the hole effective 

mass (m*
h) for the end members CdTe and ZnTe are calculated to be both 

0.17 mo. There is an upward bowing in m*
h with the bowing parameter 

δm*
e 

to be − 0.96 mo. This upward bowing in both effective masses (shown 
in Fig. 1b) are not benevolent to the efficiency of the solar cells. Further 
study of other electronic parameters must be done to mitigate this rise in 
the masses. Overall, electron masses are higher in all the members of 
ZnxCd1-xTe than holes. It could be because ZnxCd1-xTe is of a p-type 
semi-conductor. Our choice of the photovoltaic absorber Zn0.25Cd0.75Te 
has m*

e 4.46 times heavier than m*
h. Besides the average effective masses 

of all the band propagations, we have reported the standard deviation of 
them as well. All the five members of ZnxCd1-xTe have standard devia-
tion of the effective masses lower than the average. As discussed already 

multiple times, the bowing in carrier effective masses also can be 
attributed to alloying. 

We next studied the charge transferred from cation to the anion in 
the alloy. Table S4 shows the charge transferred from Cd and Zn to Te in 
ZnxCd1-xTe alloys. We observe that the charge transferred to Te from Cd 
and Zn were calculated to be 0.52 e and 0.50 e in the end members, 
where e is the elementary charge. Hence, Cd is seen to transfer more 
charge than Zn in the ordered material because the difference in the 
electronegativities in the Cd–Te pairs is larger than in Zn–Te pairs which 
makes the former pair stronger than the latter as discussed in the earlier 
paragraph [123]. However, in the alloy, we find that Zn transfers more 
charge than Cd because the Zn has to make its otherwise weaker bond 
stronger with Te than in the end member ZnTe in order to stabilize in the 
tetrahedra in the alloys. There is no bowing in the values of these charge 
transfers but a gradual decrement or increment as the composition 
changes. Additionally, the study of the charge transfer helps us to 
identify the type of the bonding taking place between the cation and the 
anion. As the charge transfer here have been observed to be lesser than 1 
e, the bonding is covalent in nature. 

Although we have not calculated detailed band structure figure for 
the alloys due to prohibitive computational cost, we have calculated 

Fig. 1. a) Electronic bandgaps, and b) effective masses of ZnxCd1-xTe alloys in B3 crystal structure calculated using the hybrid HSEO6 functional. Here, points appear 
for calculated data whereas curves sketch fitting based on a bowing parameter as defined in Eq. (3). 

Fig. 2. Crystal structure of Zn0.25Cd0.75Te in a) a-b plane, b) b-c or a-c plane, and c) [111] direction. Green, blue, and red balls represent Te, Zn and Cd atoms 
respectively. Dotted line represents single unit cell. These figures are drawn by using Visualization for Electronic and STructural Analysis (VESTA) [143]. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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projected density of states (PDOS) and projected Crystal Orbital Ham-
ilton Population (pCOHP) vs. Energy to visualize the electronic prop-
erties of the alloys. They are shown in Figures S3 and S4 respectively. 
From PDOS figure, we can assert that Te p-orbital is more pronounced 
than any other orbital below the Fermi level in the ZnxCd1-xTe alloy 
system. Besides Te p-orbital, Zn d- and Cd d-orbitals seem to influence 
the DOS below the Fermi level. However, above the Fermi level, Te-p 
orbital is seen equally dominant along with Zn s- and Cd s-orbitals. 
This is consistent with the highest electronegativity of Te while 
compared to Zn and Cd [123]. The states start to appear in the figure 
after the bandgap above the Fermi level which confirms the non-metallic 
behavior of the alloy system. Our trends on DOS have been consistent 
with earlier theoretical work [12,37]. Figure S4 for pCOHP also aug-
ments this finding. Besides such finding, pCOHP figure has peaks related 
to bonding below the Fermi level at those places where we had observed 
peaks in PDOS exactly at those venue for different orbitals simulta-
neously. Also, the anti-bonding area above the Fermi level in the pCOHP 
figure signifies the loosely held electrons in the conduction band. 

Finally, we studied optical properties of disordered ZnxCd1-xTe alloy 
system. As the B3 structure is a cubic crystal, its interaction with the 
photons is isotropic. Figure S5 shows complex dielectric function of 
ZnxCd1-xTe alloys in visible-UV range whereas Figure S6 shows in the 
range of (0-15) eV. The first peak of real part of the dielectric function 
for each stoichiometry is observed at the bandgap. Similarly, the first 
peak on imaginary part has some positive value and a peak after the 
bandgap for each stoichiometry. After the first peak, both the real and 
imaginary parts of the dielectric function display various prominent 
peaks later. These peaks are due to several inter- and intra-band tran-
sitions as well as electronic collisions in the lattice [95]. The dielectric 
constants for ZnxCd1-xTe have been tabulated in Table S5 from where we 
obtain dielectric constants for the end members CdTe and ZnTe are 
found to be 5.87 and 6.04 respectively. The dielectric constants for in-
termediate members of ZnxCd1-xTe create a bowing effect with bowing 
parameter δε of − 2.32 obtained using Eq. (3) with p = ε is shown in 
Figure S7. This upward bowing increases the values for the intermediate 
members of the alloy. As compared to Si value of 11.7 [102], these 
values are lower that compromises the likelihood of charge segregation 
due to feebly screened columbic attraction ultimately reducing the ef-
ficiency of the solar cells [130]. Among the alloy system, Zn0.75Cd0.25Te 
has the highest value of the dielectric constant. However, as 
Zn0.25Cd0.75Te has been chosen as a better fit so far for the ideal property 
of the absorber material, the dielectric value of 6.36 is also comparable 
to the highest value and hence can act as a better absorber material in 
solar cells. 

Complex dielectric function can be used to derive some crucial 
physical quantities like absorption coefficient and reflectivity [97] 
which helps us to comprehend photovoltaic efficiency. Fig. 3a displays 
absorption coefficient in visible-UV range for ZnxCd1-xTe alloy system 
along with standard AM 1.5 G solar spectral irradiance. We observe that 
the energies at first absorption peaks correlate directly with the elec-
tronic bandgaps exactly for each stoichiometry, similar to the complex 
dielectric function discussed in the previous paragraph. The other 
trailing peaks are due to the other transitions and electronic collisions in 
the lattice. The absorption spectra remain relatively unchanged for each 
stoichiometry. However, they shift towards lower energies for minority 
Zn concentrations and higher energies for majority corresponding to 
their bandgaps. Overall, ZnxCd1-xTe is found to perpetuate a robust 
optical absorption of the order of 104 cm− 1 [26], which is equivalent to 
the absorption of widely used photovoltaic material CdSexTe1-x alloys 
[9]. Consistent with the absorption, reflectivity curves shown in Fig. 3b 
show a similar pattern. Their value range between 0.18 and 0.23 within 
the bandgap of the material. Specifically for ZnTe, our value of 22.7% 
reflection at 2.37 eV photon energy matches closely with the experi-
mental result of 20.1% [26]. Above the bandgap within the visible-UV 
range, although the reflectivity keeps rising showing some peaks, the 
reflectivity is contained within 0.33. To put in a nutshell, material with 

this absorptivity and reflectivity, ZnxCd1-xTe alloy system can be used as 
graded absorber layers, or in particular, Zn0.25Cd0.75Te can act as the 
best absorber layer in solar cells to achieve a higher efficiency. 

Charge carrier mobility, Urbach Energy, and exciton binding energy 
of ZnxCd1-xTe alloys are displayed in Table S6. As the charge carrier 
mobility is inversely proportional to the effective masses, electron 
mobility is lower than hole mobility. The charge carrier mobility in the 
intermediate members is lesser than in the end members of the alloys 
due to the extra scattering in the alloys. All the charge carrier mobility 
values are lesser than that for silicon at room temperature (Electron 
mobility: 1350 cm2/Vs, Hole mobility: 480 cm2/Vs) [102]. Calculated 
hole mobilities for CdTe and ZnTe match with earlier experimental work 
[131,132]. The Urbach energy in the ZnxCd1-xTe alloys is roughly line-
arly increasing with Zn concentration. Their values are below the ther-
mal energy of room temperature (approx. 25 meV), which are 
considered favorably low for photovoltaic action which does not sub-
stantially reduce open circuit voltage (VOC) [133]. Our value of Urbach 
energy of 18.94 meV closely matches with the experimental value of 15 
meV for CdTe [133]. The exciton binding energy increases first with the 
Zn concentration and decreases later. All the values of exciton binding 
energy for ZnxCd1-xTe alloys are below 100 meV which is considered 
optimal for solar cells [103] that helps to increase efficiency of solar cells 
by increasing short circuit current density (JSC). 

Fig. 3. Absorption coefficient, α (top panel) and reflectivity (bottom panel) 
curves, left axis, of ZnxCd1-xTe alloys in B3 crystal structure computed using the 
hybrid HSE06 functional. Standard AM 1.5 G solar spectral irradiance [144], 
right axis, is illustrated in the yellow shaded area along with absorption curve. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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3.2. Phase equilibrium of ZnxCd1-xTe 

To understand the phase equilibria of ZnxCd1-xTe alloy system, we 
have computed formation energy landscape and phase diagram using 
cluster expansion formalism [81]. The accuracy of our computations can 
be established from a very small cross-validation score of 0.8 meV. 
Formation energy landscape of ZnxCd1-xTe is displayed in Fig. 4. The 
upward bowing in the formation energy landscape suggests endothermic 
mixing in the alloy, consistent with our discussion on formation energy 
on section 3.1. The rise in the enthalpy can be as high as 39 meV for 50% 
Zn concentration. Due to the difference in covalent radii (130.4 p.m. and 
148.2 p.m. for Zn and Cd respectively), the landscape displays a small 
skewness towards CdTe. The skewness observed in ternary alloys has 
been widely studied which can be attributed to volume change, chem-
ical exchange, and relaxation [63]. 

Temperature-concentration (T-x) phase diagram for ZnxCd1-xTe 
system is presented in Fig. 5. Phase segregation is thermodynamically 
observable for all concentrations at lower temperatures due to the 
endothermic mixing conditions just discussed. By the addition of 
vibrational and configurational contribution to the entropy, the con-
solute temperature decreases to 387 K from 410 K at 40% Zn concen-
tration. Using other theoretical techniques, such as using LDA, Onda-Ito 
model and quasi-chemical approximations, others have obtained the 
consolute temperature for this alloy system in the range of (460 − 701) 
K at (43− 62.3)% Zn concentration [134–136]. In some of the reported 
experimental work performed at various concentrations (0 ≤ x ≤ 1), the 
preparation temperatures have been in the range of (773 − 900) K [137, 
138]. There has been no experimental work reporting the consolute 
temperature. Our values of consolute temperature remain predictive and 
experimental verification is suggested. As our work includes both 
vibrational and configurational contribution to the entropy, it predicts a 
lower consolute temperature than previous work and is thus expected to 
be more accurate [134–136]. 

3.3. Short-range order (SRO) effects 

Since there are two different atoms in the cationic sublattice of 4a 
Wyckoff positions, the intermediate members of the ZnxCd1-xTe alloy 
system have cationic disorder, and significant SRO is observed in these 
disordered materials. As we have established from our discussion so far 
that Zn0.25Cd0.75Te has better photovoltaic properties (e.g., right band 
gap) within the ZnxCd1-xTe alloy system, we studied the effects of SRO 

for that composition (x = 0.25). Fig. 6a presents frequency of occur-
rences of all possible Zn–Cd coordination numbers relative to their 
completely random configuration simulated in 1728-atom supercells. 
We observe that the frequency of Zn–Cd coordination number at coor-
dination numbers 1, 2, 3, 10, 11 and 12 is higher whereas at the rest of 
the coordination numbers is lesser at 400 K. This distribution of the 
coordination numbers leads us to a negative value of − 0.79 of SRO 
parameter as defined in Eq. (2). Also, from Eq. (2), we can clearly 
identify that if the total number of bonds in the alloy (NZn− Cd) is higher 
than in the random limit (NZn− Cd

random), the SRO parameter becomes nega-
tive. Although the distribution in Fig. 6a displays a lesser number of 
bonds in the intermediate coordination numbers at 400 K than in the 
random limit, the total sum of the number of bonds in all the coordi-
nation numbers is higher as we see a greater number of bonds in other 
coordination numbers. This effect is considered as “anti-clustering” that 
defines the bonding of different atoms i.e., Zn and Cd in the same sub-
lattice [139]. This “anti-clustering” effect proceeds towards the “clus-
tering”, meaning the bonding of similar atoms i.e., Zn and Zn or Cd and 
Cd in the same sublattice, at higher temperatures as revealed from 
increasing value of the SRO parameter. Fig. 6c shows such variation of 
the SRO parameter with temperature. It is clear from the figure that the 
parameter increases with increasing temperature. Again, from Fig. 6a, 
we can see that the distribution of the coordination numbers is less 
dispersed at 1000 K than at 400 K, hence has a positive value of 0.11 of 
SRO parameter i.e., clustering is observed. 

Fig. 6b displays the bond angle distribution of ∡ZnTeCd in the 
Zn0.25Cd0.75Te alloy at two different temperatures. We notice a smaller 
width of bond angle distribution at 400 K than at 1000 K. Along with the 
distribution, we also calculated their bandgaps using the GGA pseudo-
potential, to compare the effect of structural distortion on bandgap. We 
have found that the bandgap is slightly higher at 1000 K (1.07 eV) than 
at 400 K (1.02 eV). This can be attributed to the lower median value of 
bond angle distribution that signifies greater strain on the bond and 
subsequent increase in the bandgap. Though very minor in the magni-
tude of change, this change in bandgap due to the difference in bond 
angle distributions are consistent with similar finding of Huang et al. 
[140]. For such a large temperature different of 600 K, the difference in 
the gap can be considered low, however it opens the possibility of 
bandgap engineering. Experimentally, the fine tuning of bandgap can be 

Fig. 4. Energy landscape of ZnxCd1-xTe in B3 crystal structure displaying in-
termediate states predicted (green crosses) through cluster expansion and 
calculated (blue circles) using DFT, ground states (black squares) of CdTe and 
ZnTe, and special quasirandom structures (SQS) (red triangles) simulated at 
concentrations of x = 0.25, 0.50, 0.75. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 5. Temperature-concentration (T-x) phase diagram of ZnxCd1-xTe gener-
ated from Monte Carlo simulations utilizing effective cluster interaction co-
efficients. Red crosses (without vibrational contribution) and blue circles (with 
vibrational contribution) are the calculated data whereas the lines are in-
terpolations and extrapolations of the calculated data. The consolute temper-
ature of alloying solid solution is predicted to be 387 K. Calculation without 
vibrational contribution to the phase diagram predicted a higher consolute 
temperature of 410 K. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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achieved by controlling the degree of clustering during the synthesis 
process in the corresponding temperature and quenching in order to 
preserve the local occupation within the structure [141]. This discussion 
adds temperature processing as a parameter to our discussion of 
bandgap engineering with composition from section 3.1. 

4. Conclusion 

We have done a thorough investigation of ZnxCd1-xTe alloy system in 
its structural, optical, and electronic front. The alloy is found to be 
endothermic owing to the strain due to the accommodation of two 
different atoms Zn and Cd of differing covalent radii. This effect can also 
be attributed to the bond length and bond angle distribution observed in 
this system. Especially, the bond length between cation and anion in the 
alloy was found to significantly vary than in the binary crystals. 
Downward bowing is observed in the bandgap implying Zn0.25Cd0.75Te 
with the minimum bandgap of 1.49 eV in the system is promising for 
photovoltaic application. Moreover, additional work on the defects of 
Zn0.25Cd0.75Te, such as vacancies of Zn, Cd or Te, interstitials, anti-site 
defects, substitution, dislocation, grain orientation, etc. will help to 

understand the material further. ZnxCd1-xTe alloy system can be used to 
deposit graded layers to capture a large fraction of the solar spectrum. 
There is an upward bowing in both hole and electron effective masses. 
The result of small charge transfer suggests that the computations are 
consistent with the covalent bonding in these semi-conductors. Also, Zn 
transfers more charge to the Te than Cd consistent with their electro-
negativities. Electronic states are found to be positively bonded below 
the Fermi level whereas negatively bonded above the Fermi level as 
observed in DOS and pCOHP analyses. Also, Te electronic states were 
dominant over Zn and Cd below the Fermi level whereas comparable 
above the Fermi level. The dielectric constants have an upward bowing 
in the system that highly improves charge segregation for better carrier 
transport. The energies at the first absorption peaks were found to 
correlate directly with the electronic bandgaps for each stoichiometry. 
The absorption in the alloy is robust of the order of 104 cm− 1. Reflec-
tivity ranges between 0.18 and 0.23 within the bandgap of the material 
suggesting minimal reflection. By implementing cluster expansion 
formalism with both configurational and vibrational contribution to the 
entropy, we have obtained the consolute temperature for the solid so-
lution to be 387 K at 40% Zn concentration. We saw an association of 

Fig. 6. a) Frequency of occurrences of all possible 
Zn–Cd coordination numbers relative to their 
completely random configuration. Values here are 
taken from 1728-atom supercells. b) Bond angle dis-
tributions of ∡ZnTeCd in Zn0.25Cd0.75Te simulated at 
400 K and 1000 K. Also, bandgaps in those distribu-
tions are provided in eV calculated using GGA. c) 
Short-range order parameter, σ defined in Eq. (2), of 
Zn–Cd pairs in the cation sublattice of disordered 
Zn0.25Cd0.75Te simulated at various temperatures. 
Negative values imply a deficiency of Zn–Te bonds 
relative to the random limit.   
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different cations at a lower temperature in the alloy than in the random 
limit known as “anti-clustering” at lower temperatures. This caused a 
negative value in SRO parameter that moved towards zero or positive at 
higher temperatures. A lesser width of bond angle distribution at 400 K 
is observed than at 1000 K. The computed bandgap is slightly higher at 
1000 K (1.07 eV) than at 400 K (1.02 eV). Charge carrier mobility, 
Urbach Energy, and exciton binding energy of ZnxCd1-xTe alloys are also 
calculated. Our results indicate temperature as well as composition as 
possible parameters for bandgap engineering in this system. 
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