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1 Introduction Lead selenide (PbSe) represents a 
promising thermoelectric material owing to its high ther-
moelectric figure of merit [1–5]. This property is expected 
to be further enhanced in anisotropic one-dimensional 
structures [6, 7]. The employment of one-dimensional ge-
ometry in optoelectronic applications is also favorable for 
achieving a high carrier mobility and large diffusion length 
along the rod axis [8], in contrast to zero-dimensional 
quantum dots. Recent observation of high multiple-
exciton-generation [9–12] rate and slow Auger recombina-
tion rate [13, 14] make them promising for highly-efficient 
photovoltaic devices. 

Colloidal PbSe nanowires/nanorods have been synthe-
sized previously by Cho and co-workers [15], where one-
dimensional oriented attachment was identified to be the 
primary growth mechanism. Later, Koh and co-workers 
have developed a catalyst-free one-pot method to synthe-
size PbSe nanorods at lower reaction temperatures [16]. 
Han and coworkers introduced diphenylphosphine into the 
reaction, further reduced the reaction temperature and syn-
thesized the nanorods with diameters ~2 nm [17]. By re-

moving the water from the reaction solution, Placencia and 
coworkers have demonstrated that branchless nanorods can 
be synthesized [18]. 

We developed a general method for the synthesis of 
PbSe nanorods using a chloroalkane (e.g. chloroform 
CHCl3) as the co-solvent during the reaction (see Support-
ing Information A). Chloroalkanes have been previously 
used to drive two-dimensional attachment of PbS quantum 
dots to form nanosheets [19–24]. The application of this 
co-solvent in the synthesis of PbSe was found to promote 
one-dimensional nanorods. The main focus of this Letter is 
to illustrate the effect of chloroalkanes on the growth of 
nanorods. We will also show that the as-synthesized PbSe 
nanorods have narrow photoluminescence peaks and high 
photoluminescence quantum yields that will find applica-
tions in infrared optoelectronics and photonics. 

The role of the chloroalkanes in the shape-controlled 
syntheses of the colloidal nanostructures is not yet well 
understood. Chloroalkanes were originally thought to act 
as lead-complexing agents that modified the surface of the 
PbS nanocrystals and consequently altered the kinetics of 

Catalyst-free, one-pot synthesis of colloidal PbSe nanorods is
demonstrated. The co-solvent chloroalkanes play a critical
role in driving a one-dimensional growth of PbSe nanorods.
The formation of the nanorod is likely governed by the ani-

 sotropic growth of the crystal due to the different reactivity of
the facets. The photoluminescence quantum yield of the na-
norods is above 25%, indicating well-passivated surfaces. 
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nucleation and growth [19]. The chloroalkane may also re-
lease Cl– ions [25], which act as anionic X-type ligands to 
bond to the metal ions on the nanocrystal and change its 
growth dynamics [26], resulting in less-symmetric nano- 
structures as demonstrated for CdS (rod shape) [27] and 
CdSe (pyramidal shape) [26] nanocrystals. By performing 
a crystallographic analysis of the intermediate structures 
obtained at different reaction stages via transmission-
electron microscopy (TEM), we found that the aspect ratio 
of the PbSe nanorods was nearly constant during the reac-
tion while the diameter of the rod increased over time. It 
indicates that the nanorods are formed by the anisotropic 
growth in a specific direction due to the chloroalkane. The 
synthesized nanorods exhibit high photoluminescence 
quantum yield, indicative of a good surface passivation 
which may be attributed to the attachment of chloroalkane 
molecules or Cl anions to the nanorod surfaces. 

 
2 Experimental and results 
2.1 Growth mechanism Unlike CdSe nanocrystals 

which have a permanent dipole along the c-axis of the 
crystal that drive the nanocrystal grow one-dimensionally 
[28] the centrosymmetric PbSe nanocrystal has no intrinsic 
dipole. However, non-centrosymmetric arrangements of 
the polar {111} facets (either Se- or Pb-terminated) can re-
sult in a dipole moment along the 〈100〉, 〈110〉 or 〈111〉 
axes, which will drive one-dimensional oriented attach-
ment of nanocrystals to form nanorods [15]. This is one 
well-accepted mechanism explaining the growth of nano-
rods.  

In our experiments, we observed the coexistence of 
nanocrystals and nanorods at the early stage of the crystal 
growth (see Supporting Information B and Fig. 1a). It is 
possible that oriented-attachment occurs at this stage. After 

 

 
Figure 1 TEM images showing the growth of nanorods at differ-
ent stages. Reaction condition: 170 °C, 1,2,3-trichloropropane as 
the chloroalkane co-solvent. 

 
Figure 2 (a) Aspect ratio of the nanorods versus the reaction 
time. (b) Average diameter of nanorods versus the reaction time. 
The error bars indicate the statistic errors (± standard deviation). 
 
70 seconds, nearly all nanocrystals developed into I-shaped, 
L-shaped or T-shaped nanorods. From that point on 
(70 seconds into the growth), the aspect ratio of the  
I-shaped nanorods remained nearly constant while the di-
ameter of the nanorods increased over the reaction time 
(Fig. 2). The increase of the diameter of the nanorods by 
reaction time (Fig. 2b) is similar to that observed in Koh’s 
syntheses [16]. The nearly constant aspect ratio ~4 in our 
synthesis (Fig. 2a) indicates that the axial growth rate is 
about 4 times of the lateral growth rate. However, one-
dimensional oriented attachment of the nanocrystals in 
Koh’s synthesis additionally increases the axial growth of 
the nanorods, resulting in an increase of the aspect ratio of 
the nanorods by reaction time [16]. That process is differ-
ent from what was observed in our syntheses where ori-
ented attachment is likely missing. 

As the reaction time increases, the increase in the 
nanorod diameter is accompanied by the reduction in the 
band gap. Both the absorption and photoluminescence 
measurements consistently show this trend (Fig. 3), mani-
fested by the spectral red-shift of the respective excitonic 
features. After about 120 seconds, the diameter of the 
nanorods remains nearly the same (Fig. 2b), indicating that 
the monomers have been consumed and the nanorods stop 
growing. 

High-resolution TEM (HRTEM) was used to further 
understand the crystal structure and the anisotropic growth 
of the PbSe nanorods. The images of nanorods in Fig. 4 
shows that their side facets are either {100} (Fig. 4b) or 
{110} (Fig. 4c). It indicates that the axis of the nanorod is 
in either 〈100〉 or 〈110〉 direction. Further analysis of the 
HRTEM image shows that  the projected minimum atom  
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Figure 3 (a) Absorbance spectra of the PbSe nanorods at differ-
ent growth stages. Inset: the symbols and the corresponding reac-
tion times in seconds. (b) Photoluminescence spectra of PbS 
nanorods at different reaction times indicated by the same sym-
bols as in (a). The arrow shows the red-shift of the photolumines-
cence peak by the reaction time. 

 
spacing is 0.31 nm (Fig. 4b, c) in the axial direction, 
0.31 nm (Fig. 4b) or 0.22 nm (Fig. 4c) in lateral direction. 
These are unique features of the nanorod with its axis in 
〈100〉 direction (Supporting Information C). Nanorods with 
its axis in 〈110〉 direction also show 〈100〉 or 〈110〉 side 
facets, but the projected minimum atom spacing in axial or 
lateral direction will be different. 

Based on the HRTEM images, we find that the two 
ends of nanorods are not flat but exhibit sharp tips. In the 
zone axis 〈001〉, the angle is 90.0° (Fig. 4b), while in the 
zone axis 〈110〉, the angle is 70.5° (Fig. 4c) (Supporting In-
formation D). It reveals that the ends of nanorods are 
dominated by {110} and {111} facets. The {110} and 
{111} facets are more reactive than {100} facets due to a 
higher density of dangling bonds [28]. We speculate that 
the growth in the 〈110〉 and 〈111〉 directions results in a net 
growth in 〈100〉 direction. As shown in Fig. 4b, the 
growths of the (110) and (110)  facets are in [110] and 
[110] directions, respectively. They make a right angle. The 
components in [010] and [010] (perpendicular to the rod 
axis) are opposite to each other. The competition among 
them limits the crystal growth in the radial directions. 
However, the components in [100] direction add up so that 
the growth in the [100] direction is enhanced. The growth 
of (111) and (111)  facets (Fig. 4c) follows the same 
mechanism and results in a net growth in [100] direction. 
The different growth rate in (111) and (111) facets results  

 
Figure 4 (a) A TEM image of PbSe nanorods synthesized at 
180 °C with TCP. The squares labeled with “b”, “c” and “d” indi-
cate the areas to be zoomed-in in (b), (c) and (d), respectively. (b) 
A HRTEM image of the nanorod showing a rock-salt crystal 
structure with {100} facet facing up. The tip of the rod is formed 
by the (110) and the (110) facets. (c) A HRTEM image of the na-
norod with its {110} facet facing up. The tip of the rod is formed 
by (111) and (11 1) facets. (d) The HRTEM image of an L-shaped 
nanorod with its (100) facet facing up. The growth direction of 
the nanorod make two 45° turns, making an L-shaped nanorod. 
(e) A HRTEM image showing a nanorod pointing upward as the 
others lying down on the substrate. (f) The HRTEM image of the 
tip of the PbSe nanorod showing a (100) facet. 

 

in different sizes of the two facets. As shown in Fig. 4c, 
facet (111) is much larger than facet (111). When the dif-
ference is large enough, the growth direction will change. 
As shown in Fig. 4d, the initial growth direction [100] 
turns to [110] and then [010], making an L-shaped rod. 

Notably, the observed one-dimensional growth is only 
possible when a chloroalkane is used as the cosolvent dur-
ing the reaction. If it is absent, nanocrystals evolve to 
hexapods or octahedrons (Supporting Information E), 
which are not emissive. Similar nanostructures have been 
reported earlier by Houtepen [29], Gerdes [30] and co-
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workers. Gerdes and coworkers mentioned that each 
branch of the hexapod extends in 〈100〉 direction [29]. The 
presence of chloroalkanes slows down the nucleation and 
the formation of the nanocrystals [29, 31]. Chloroalkanes 
are considered to be a lead-complexing agent [19, 29] 
which is likely the cause of the slow nucleation and growth 
of nanocrystals. The slow growth makes it possible for  
the {110} and {111} facets to manifest their higher reac-
tivity (due to their higher density of dangling bonds than 
{100} facets) [28], resulting in the net growth of the 
nanocrystal in 〈100〉 direction as mentioned earlier. Inter-
estingly, the type of chloroalkane has no noticeable effect 
on the growth of nanorods. A series of chloroalkanes 
(chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 
1,2-dichlorobutane and 1,2,3-trichloropropane) have been 
tested for the synthesis and the same growth kinetics were 
observed.  

There are six equivalent 〈100〉 directions for a cubic 
crystal. In principle, it can grow into a star-shaped struc-
ture with six long arms. The prevailing I-shaped rods indi-
cates that they are not exactly equivalent. Some facets are 
slightly more reactive than others so they dominate the 
growth direction. However, growth in other directions is 
also possible when the reactivity of each facet are nearly 
the same. This results in an L-shaped, T-shaped (Fig. 1) 
and even six-arm star-shaped (Fig. 4) structures. In these 
structures, some arms point upward from the TEM grid, 
making it possible to observe the crystal structure along the 
rod axis (Fig. 4e, f). The dark octagonal spots (Fig. 4f) are 
commonly seen in the HRTEM images, so they are 
unlikely due to the random overlaps of two or more indi-
vidual nanorods. The HRTEM image (Fig. 4f) confirms 
that the end facet is {100}, and other arms extend in 〈100〉 
directions as well. The image also reveals that the cross-
section (perpendicular to the axis of the rod) of the rod is 
octagonal. The octagonal rod likely grows from a cubocta-
hedron (or truncated octahedron) seed [32], a typical shape 
of a PbSe [33] or PbS [34, 35] nanocrystal.  

The branching of the nanorods is important for us to 
study the growth mechanism, but it could be suppressed by 
removing the excess water and acetic acid in the reaction 
solution. Placencia [18] and Boercker [36] have demon-
strated that removing water in the reaction solution sup-
pressed branching of PbSe nanorods. We expect that it 
might work in our synthesis as well.  

It is worthy to note that the chloroalkanes make PbSe 
grow one-dimensionally in this work, but make PbS grow 
two-dimensionally [19–21]. We suspect that the subtle dif-
ference of the Se and S chemistry might be the cause. It is 
an on-going project in our group to solve this puzzle. 

 
2.2 Optical properties Overall, the final product 

contains PbSe nanorods that are uniform in diameter as 
manifested by a relatively narrow photoluminescence 
emission peak (Supporting Information F). The ratio of the 
full-width at half-maximum to the central photon energy is 
typically less than 0.14. This implies the dispersion of the 

energy gap or the diameter is within ±7%. The absolute 
photoluminescence quantum yield was measured using an 
integrating sphere [37], following the method developed 
by Friend et al. [38]. The nanorods with an energy gap of 
0.8 eV have the quantum yield about 27%, nearly twice as 
much as the quantum yield (15%) of the nanorods synthe-
sized by Koh and coworkers [16]. The high quantum yield 
is likely due to the additional surface passivation by the 
chloroalkane since the energy-dispersive X-ray spectro- 
scopy of nanorods shows Cl peak (Supporting Information 
G). This result is consistent with an earlier study by Tang 
and coworkers who demonstrated that the performance and 
the stability of the PbS quantum-dot solar cells were en-
hanced after passivating the quantum-dot surface using 
halide anions (including Cl–) [39]. 

 
3 Conclusions In summary, we have investigated the 

effect of chloroalkanes on the growth of PbSe nanorods. 
The chloroalkane co-solvent is critical for the formation of 
the one-dimensional nanostructures. They also improve the 
surface passivation for the nanorods, resulting in a high 
photoluminescence quantum yield. The developed ap-
proach with the application of chloroalkanes provides a 
new route for the synthesis of high-quality colloidal PbSe 
nanorods which may find applications in infrared photon-
ics and optoelectronics. 

Supporting Information Additional supporting informa-
tion may be found in the online version of this article at the pub-
lisher’s website. 
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