Spin-charge-lattice coupling through resonant multimagnon excitations in multiferroic BiFeO3

Citation: Appl. Phys. Lett. 94, 161905 (2009); doi: 10.1063/1.3118576
View online: http://dx.doi.org/10.1063/1.3118576
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v94/i16
Published by the American Institute of Physics.

Related Articles
Measurements and ab initio molecular dynamics simulations of the high temperature ferroelectric transition in hexagonal RMnO3
J. Appl. Phys. 110, 084116 (2011)
A correlated electron diffraction, in situ neutron diffraction and dielectric properties investigation of poled (1-x)Bi0.5Na0.5TiO3-xBaTiO3 ceramics
J. Appl. Phys. 110, 084114 (2011)
The covalent bonding interaction in the ferroelectric LuMnO3
J. Appl. Phys. 110, 084112 (2011)
Terahertz and infrared studies of antiferroelectric phase transition in multiferroic Bi0.85Nd0.15FeO3
J. Appl. Phys. 110, 074112 (2011)
Free-standing ferroelectric multilayers: Crossover from thin-film to bulk behavior
J. Appl. Phys. 110, 074116 (2011)

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Spin-charge-lattice coupling through resonant multimagnon excitations in multiferroic BiFeO$_3$

1Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Department of Physics, University of California, Berkeley, California 94720-1760, USA
4Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
5Department of Physics and Astronomy Rutgers Center of Emergent Materials, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-8019, USA
6Materials Research Center, Northwestern University, Evanston, Illinois 60208, USA
7Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
8Department of Physics and Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, Texas 77204-5002, USA

(Received 27 December 2008; accepted 24 March 2009; published online 21 April 2009)

Spin-charge-lattice coupling mediated by multimagnon processes is demonstrated in multiferroic BiFeO$_3$. Experimental evidence of two- and three-magnon excitations as well as multimagnon coupling at electronic energy scales and high temperatures are reported. Temperature dependent Raman experiments show up to five resonant enhancements of the two-magnon excitation below the Néel temperature. These are shown to be collective interactions between on-site Fe d-d electronic resonance, phonons, and multimagnons. © 2009 American Institute of Physics.

[DOI: 10.1063/1.3118576]

Spin-charge-lattice coupling is central to the current interest in multiferroic materials. In particular, the coupling between magnetization and polarization can lead to cross-coupled phenomena such as magnetic control of polarization and electrical control of magnetism. Multiferroic materials with both polar and magnetic order parameters usually show a relatively low-symmetry crystal structure due to the absence of both time and space inversion symmetries; hence, a strong interaction between the low-lying magnetic and lattice excitations can occur, leading to rich new physics phenomena. One widely studied mechanism for spin-charge coupling is through electromagnons, which are single-magnon spin excitations. An unexplored mechanism in multiferroics is through multimagnon excitations, which are known to be very sensitive to temperature effects and phase transitions.

Bismuth ferrite, BiFeO$_3$, the focus of this study, has a robust ferroelectric polarization (~100 μC/cm2) at room temperature (RT), that is the largest among known ferroelectrics. At RT, BiFeO$_3$ is a rhombohedrally distorted ferroelectric perovskite with space group $R3c$ and a Curie temperature, $T_C < 1100$ K. It also shows a G-type canted antiferromagnetic order below Néel temperature, $T_N < 640$ K, and, in the bulk, an incommensurate space-modulated spin structure along (110)$_p$. During the past few years, various physical properties of BiFeO$_3$ have been reported to show anomalies across T_N. However, with the exception of neutron diffraction, none of these properties have clean distinguished the magnetism from the polar contribution in this material. This makes the study of coupled phenomena challenging. Here we show that combining Raman scattering and linear optical spectroscopy of multimagnons, phonons, and electronic energy levels can reveal spin-charge-lattice coupling in this system.

For our experiments, 4.5 μm BiFeO$_3$ film on (110) DyScO$_3$ and BiFeO$_3$ single crystal were grown according to Refs. 12 and 14. The thick films were relaxed and had (001)$_p$ pseudocube-on-pseudocube epitaxial geometry, with trigonal C_3v crystal structure. Raman spectra were recorded under excitation at 488 nm in a backscattering geometry by using a WITec alpha 300 S confocal Raman microscope equipped with a Linkam heating stage. Raman spectra were collected in unpolarized geometry. Optical transmittance measurements were performed using a Perkin Elmer Lambda-900 spectrometer between 4 and 730 K.

Though magnons energy are typically small (<100 cm$^{-1}$), Raman scattering for spin wave optical branches at higher energies have been previously reported in iron oxides due to their large unit cell, their corresponding multimagnon excitations located at energies larger than 1000 cm$^{-1}$. Figures 1(a) and 1(b) depict the high frequency unpolarized Raman spectra for a 4.5 μm thick epitaxial film of BiFeO$_3$ collected at different temperatures. Further details on the temperature dependent Raman spectra under 1300 cm$^{-1}$ can be found in Refs. 11, 14, and 16. Evidence for two- and three-magnon scattering at the shoulder of a previously reported two-phonon overtone can be observed, their energy values peaking at ~1530 and 2350 cm$^{-1}$, respectively. The two- and three-magnon excitations were identified by using the striking spectral similarity between BiFeO$_3$ and α-Fe$_2$O$_3$, the simplest case of an iron oxide containing only FeO$_6$ octahedra, where not only two-magnon scattering but also two-phonon overtones at very similar energies have been reported. (Our films and crystals were grown according to Refs. 12 and 14.)
Experiments were performed in the same spectral range using synchrotron x-ray diffraction, transmission electron microscopy, and scanning probe microscopy. RT midinfrared absorption measurements but also point out strong coupling interactions between the spin system and electric dipole active excitations in BiFeO$_3$. The two magnon absorption band can be seen around 1550 cm$^{-1}$ and two-phonon (<1260 cm$^{-1}$) excitations as a function of temperature, a clear plot of the temperature driven multimagnon enhancement can be obtained [Fig. 1(e)]. Since anomalies in the measured resistivity and induced magnetization were observed only at T_N, and not at any of T_1^a to T_4^a, it rules out spin reorientation transitions except at T_N. Also, a lack of any anomalous lattice parameter changes at these temperatures suggests that these are not structural phase transitions. We note that the two-phonon overtone—strongly enhanced due to the resonance with the intrinsic absorption edge—also couples strongly to T_N as shown previously. Hence, since the excitation energy ($E_{\text{exc}} < 2.54$ eV) is close to the band edge, these anomalies appear to be (multi)magnon/phonon-assisted electronic resonances driven by temperature shifts. To further explore this possibility, we first probed the electronic structure of BiFeO$_3$ at high energies, i.e., close to the band edge.

Temperature dependent linear absorption measurements (from $T=5$ to 730 K) and parameterization analysis were performed on a BiFeO$_3$ film on DyScO$_3$ (110). For the series of temperature dependent measurements, the complex index of refraction ($N=n+i\kappa$) were extracted by fitting the experimental ellipsometric spectra to an optical model consisting of a semi-infinite DyScO$_3$ substrate/100 nm BiFeO$_3$ film/air ambient structure. Free parameters correspond to the parameterization of the BiFeO$_3$ dielectric function represented by this film by a Lorentz oscillator, three Tauc–Lorentz oscillators sharing a common Tauc gap, and a constant additive term to e_1 represented by e_{osc}.

Figure 2(a) shows an example of experimental transmittance spectra at $T=5$ K for the 100 nm BiFeO$_3$/DyScO$_3$ substrate stack and fit to the corresponding model. It displays an absorption onset at ~ 2.2 eV, a small shoulder centered at $E_{\text{TL}} \sim 2.5$ eV, deriving from onsite d-to-d excitations of the Fe$^{3+}$ ions and two larger features near 3.2 and 4.5 eV that are assigned as charge transfer excitations. All temperature dependent experimental spectra and fits are in good agreement. Figure 2(b) shows the position of the $E_{\text{TL}} \sim 2.5$ eV shoulder extracted from a parameterization of the absorption spectrum as a function of temperature. As observed, it shows singularities at $T_1^a \sim 380$ K, $T_5^a \sim 580$ K, and T_N, consistent with the previously reported band gap temperature dependence, and the current Raman results. Furthermore, from the results displayed in Fig. 2(b), it can be seen that all the singularities observed in the magnetic Raman response [Fig. 1(e)] occur within the
FIG. 2. (Color online) (a) Absorption spectrum obtained for a 100 nm BiFeO$_3$ film on DyScO$_3$(110). Solid lines are fits to the parameterized di-electric function at 5 K. (b) (Left axis) Energy position, E_{TL}. Also shown are resonance conditions at T_1^e (i=1–5) and T_N involving the Raman excitation wavelength E_{exc}, Tauc–Lorentz energy, E_{TL}, one- and two-magnon and phonons Ω_1, Ω_2, and Ω_3. (Right axis) Integrated intensity ratio between the two-magnon and two-phonon Raman overtones as a function of temperature.

In summary, we have shown experimental evidence for spin-charge-lattice coupling in multiferroic BiFeO$_3$. Using a near resonant excitation wavelength (2.54 eV), six Raman enhancements of two-magnon excitations are observed with temperature: one at T_N arising from the antiferromagnetic phase transition and five new ones below T_N, which are shown to be combined resonances involving electronic levels, phonons, and magnon states. The work highlights the sensitivity of multimagnon spectroscopy to spin-charge coupling in multiferroics that has been minimally explored so far and appears to be broadly applicable to other multiferroics and magnetoelectrics.

We acknowledge funding from the National Science Foundation Grant Nos. DMR-0512165, DMR-0507146, DMR-0820404, DMR-0507146, DMR-0820404, and DMR-0602986, DMR-0520513,DMR-0213623, and DMR-0520471 the MSD, BES U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-FG02-01ER45885 and the DOE/BES under Contract No. DE-AC02-06CH11357.

18 The lattice parameters change with temperature, T linearly as $a(X) = 6.73 + 8.7 \times 10^{-3} T(K)$ and $c(X) = 13.81 + 2.21 \times 10^{-3} T(K)$.