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Abstract

A multichannel ellipsometer in the dual rotating-compensator configuration has been designed and constructed for applications
in real time Mueller matrix ellipsometryapprox. 2-5 eV of anisotropic surfaces and films. The sequence of optical elements
for this instrument is denoteBC,,(w,)SC,(w,)A, whereP, S, andA represent the polarizer, sample, and analy@efw,) and
C,(w,) represent two Mgk biplate compensators that rotate at frequencies/2fr=10 Hz andw ,/27=6 Hz, synchronized
for a ratio w,: w, of 5:3. Spectra in the 16 Mueller matrix elements of a transmitting or reflecting sample can be established from
the 25 non-zero Fourier coefficients of the irradiance wavefetiquired in a single 0.25 s optical cycle. Initial high speed
Mueller matrix measurements have been performed on weakly anisotropic samples that push the instrument to ity precision
accuracy limits. These include thg10) Si surface with maximum cross-polarization ellipsometric anglesygf~0.1° and
nanostructured thin films with maximum,s~ 1°.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction polarization of the reflected beam, which reveals sample
non-uniformities andor instrument errors.

Multichannel ellipsometers have been developed and For optically anisotropic materials, even the single
applied as powerful tools for studying thin film growth rotating-compensator multichannel ellipsometer may be
and surface modificatiohl]. The simplest such instru-  insufficient for real time characterization. The ultimate
ments, used since-1990, are based on rotating-polar- so|ytion in this case is to measure the entire Mueller
izer principles [2] and have several limitations. The atrix of the sample, while retaining the high speed
most serious one arises from the inability of a rotating required for real time spectroscopy. A number of Mueller

polarizer to measure the third normalized Stokes VeCtormatrix ellipsometer designs have been proposed, includ-
component of the light beam reflected from the sample . . . : .
ing configurations with dual rotating-compensatffs-

[3]. Thus, precisiofiaccuracy is degraded for analysis 8] or phase modulatordg]. Other designs require

of reflected polarized light having a small ellipticity ftip| o diff ical fi
angle x. In addition, unrecognized depolarization gen- Multiple measurements in different optical configura-

erates experimental errors. Sineel997, rotating-com- tions, and so are unsuitable for real time materials
pensator multichannel ellipsometers have been used thagnalysis [10-14. In this study, the performance and
overcome these limitations by providing all three com- applications are reported for a recently-developed mul-
ponents of the Stokes vectdd]. These instruments tichannel Mueller matrix ellipsometer designed in the
provide high precisiofiaccuracy spectra iry over its PC,(w,)SC,(w,)A configuration as described in Ref.
full range (—45°< y<45), and, thus as the sign of [8] (see Fig. ). The polarization generation arm
(inaccessible by rotating polariZerin addition, the includes a fixed polarizer and rotating compensator, and
rotating-compensator instrument provides the degree ofthe polarization detection arm includes a second rotating
" +Corresponding author. Tel+ 1-814-865-3059; fax:+ 1-814-865- compensator a.nd_ fixed analyzer._ With a frequency ratio
2326. w,.w, Of 5:3, this instrument provides the entire Mueller
E-mail address: rwc6@psu.edfR.W. Colling). matrix at ~150 spectral positions from2 to 5 eV in
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Fig. 1. Schematic diagram of the dual rotating-compensator multichannel ellipsometer.

a time as short as 0.25 s, a single optical period of the Here, (Cs;, Cs) are defined by the equations ;=

dual rotating-compensators.

2. Theoretical description

5(wt—Csy) and C,=3(wt—Cgy, WhereC ; andC ,

are the true angles of the fast axes of the first and
second compensators. ThushCs;, and —3Cg,are the
angles of the fast axes a0, defined as the onset of

For the dual rotating-compensator multichannel ellip- data acquisition for the given pixdlor pixel group.

The d.c. and d.c.-normalized a.c. coefficients can be

someter withw, =5w and w,= 3w, the time-dependent
waveform predicted at each pixel of the array detector written collectively as{1,, (as,, B»,); n=1,...,16} and
can be expressed in terms of the Mueller matrix of the are given byly=ago oz =as,/ae and B,,=b,,/ao.
sample[8]. The waveform used for theoretical analysis The average irradiance in the waveforfy can be

is given by

I(t)=io {ao—i- f [a2,.0092nwt — b,

+by,Sin2nwt — dm)}}, (1a)

where{ao, (as, bo,); n=1,...,16} define the d.c. and

expressed as the product of three factGisthe ellip-

someter spectral response functidg, (i) the d.c.

coefficienta,, and(iii ) the (1,1) Mueller matrix element
M, of the sample.

3. Data collection
For an error-free system in the dual-rotating compen-

sator configuration with the angular frequencies=
50=27(100 s ! and w,=3w=2w(6) s, the

unnormalized a.c. Fourier coefficients. Among the 32 irradiance at any given pixebr pixel group obeys the
possible a.c. Fourier coefficients under the summation following experimental expressioi8]:

in Eq. (1a), the eight coefficients witk=9, 12, 14 and

15 vanish even for the most general Mueller matrix.

The phases of the individual Fourier componefits,,;

n=1,..8, 10, 11, 13, 1pb in Eq. (1a) are given in
terms of the phase anglé€s,, Cs,) of the two rotating
compensators as follows:

b, ={sgn3L—5K)H{ 3LCs,—5KC & ;
(K=0,2,4; L=0,2,4), (1b)
where 2 =|3L—5K]|, applicable fom=1,..., 7, 10; and
b, =3LC5,+5KC g5

(K=2,4:L=2, 4), (10

where 22=3L+5K, applicable forn=8, 11, 13, 16.

16
I'(t)y= IO'{I + Y (a2, COSZwt + B, SiﬂZuot)}, 2

n=1

where{ly, (a3, B2.); n=1, 2,.., 16} are the d.c. and
d.c.-normalized a.c. Fourier coefficients to be deter-
mined experimentally. Eq.2) differs from Eq.(1a) in
that the former waveform does not include the compen-
sator phase angles,,. These terms are omitted from
the experimental phases because they cannot be deter-
mined until a calibration is performed that yiel€€s,,
Csy). If the detector is readVv times per fundamental
optical period(#/w)=0.25 s, each read-out with the
same exposure time of=7/(Nw)=(4N)"! s, thenN
irradiance waveform integrals are generated. Fer36
andz,=6.94 ms, one can form a set of 36 equations in



16 C. Chen et al. / Thin Solid Films 455-456 (2004) 14-23

36 unknowns for each spectral position by extending m,,+ im 3= (a /s 5 ) exp(—2iP") { B gexp(2iA")

the series in Eq(2) to include all even Fourier coeffi-

cients up toBs¢ (but not includingasg). The corre- +Bg, exp(—2iA)}, (4e)
sponding 36<36 matrix of coefficients can be inverted

to deduce{lo/, 0(2,,,, (m=l,,17), an, (f’l=1,,18)} +i =(—=2i sind B xol — 2i(P' + A’

Of these 36 quantities, 11 Fourier coefficients should = 2" > (~2ia /s 2Sind N B 222xpl —2i( 2

vanish (corresponding ton, n=9, 12, 14, 15, 17n= f
18). (4f)
4. Data reduction m32+im33= (la Q/S s Q eXd_ZiP’) {B seXFXZiA,)

Once the d.c. and normalized a.c. Fourier coefficients — Ba, exp(—2iA")}, (49

{1y, (a2, B2'); n=1,...8, 10, 11, 13, 1P are deter-
mined and calibration data fdiCs,, Cs) are available ,,,  —(4./¢,5ind ){ 2 1,SINA2P' —A")
(see Section j the next step is a phase correction of

the coefficients performed by applying — 2B 14 COSA2P' — A") +1 10 6 SIN2A’

(a2, BZn)T=§ﬁ(¢2n)(012n’BZn,)T§
—t1BeCOSA'}, (4h)

(n=1, 2,...,, 8, 10, 11, 13, 16) (3)

Map+ imaz=(2ia /s 1IN ) {B eexp — 2i(P'+A")]},
where T denotes the transpose of the row vector and
N(d,,) is the 22 rotation transformation matrix for (40)
the angled,, [8]. From the phase-corrected Fourier
coefficients, the normalized Mueller matrix elements
{m;,=M;/M,y; i=1,..,4;j=1,..,4} can be determined.
For the upper left X3 block of m;, there is only one ) S .
possible set of equations for this purpose, whereas for —BasinAP' A"}, (4))
the 4th row and column, multiple methods are possible.

Mas=(2a0/siNd SiNd H{ —a ,cosAP' —A")

Here, the following set of equations is applied:

ao="11t At o 7+t gCOSEP —A')+ B gSiN4(P' —A')
— 11001 LOSHA’ —1 43 1 8IN4A’

— 1,00,COSDP’ — 1t 3 ,$INAP’

along with M,,=1,/(Ioq19. In Egs. (4a)—(4)), B 5=
Q2+ B2y Bo* =z, —iBa, s,=siF(8;/2), and t,=
tar’(3,/2) (j=1,2), where 3, (j=1,2) represent the
slow-to-fast axis phase shifts for the first and second
rotating compensators. For the evaluation Mf;=
M,,m;; from {Io, (a3, B2), n=1,..8, 10, 11, 13, 1b

in data reduction, one requirdg,, 8, 8, PP=P—Pg
A'=A—Ag, all of which are determined in calibration.

+03,C0S4P +A") + B3 SIN4P +A')} (43) Here P and A’ are the true angles of polarizer and
analyzer transmission axes given in terms of nominal
myp+imqz=(ay/s ¢ ) exp(—2iP’) readings,P andA, and offset corrections?s andA ¢
X{ — Bg exp(4iA") +1,B 20— B 3» 5. Calibration
X exp(—4iAN}, (4b) For the dual rotating-compensator multichannel ellip-
someter, the usual calibration sequence involv@s:
mya=(ao/t,SiNd Y{ 20 ,,SINAP’'+24") measurement of the retardance spedtaand 3, in
straight-through,(ii) determination of the optical ele-
— 2B 2» COSAP' +24") — 1 ot 1,SIN2P’ ment offset and phase angléBs, Cs;, Csz A 3 with
the sample in place after its alignment, afiid) meas-
+1,810COSP'}, (40) urement of the ellipsometer spectral respongefrom
initial measurements of the starting samplé&]. Thus,
Mo +img=(a/t 5 ) exp(—2iA’) with this sequenced, and &, are determined once in
the initial development of the ellipsometéor after any
X { —Bg*exp(4iP") + 1B 1,— B 3, major system realignmentusing the straight-through
PC,,(5w)C,(3w)A configuration without a sample. The
x expl — 4iP")}, (4d) offset and phase angles are determined in a separate

step after mounting and aligning the sample. Although
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self-calibration(i.e. calibration using the measured Fou-
rier coefficients without a separate sjap possible for
an isotropic sample, higher accuracy is achieved by 120 |-

(a)

performing calibration vs. polarizer and analyzer angular g
readings. Finally, slight differences in beam path through D 90
the second compensator, resulting when measuring sam- =2 )
ples with differing alignments, can lead to variations in S g0 7 . Measfred 5,
the appropriated, for data analysis of such samples. — Fittos,
This problem can be minimized in an alternative cali- —t————
bration in which 8, is measured with the sample in 120 b (0)
place after the offset and phase angle calibration, but G
before the spectral response calibration. QE); o L

(0]

ke
5.1. Retardance calibration ;:u 5 o Measured 5,

—— Fitto s,
In general, an internal alignment procedure is neces-

sary to ensure that the fast axes of the two plates of o,
()
05 . A5, ]

each Mgk biplate compensator are precisely orthogonal,
and thereby to minimize artifacts in their retardance
spectrg[16,17. Here, it is assumed that such a procedure
has been performed for both compensators. For meas-
urements in the straight-througtC, ,(50)C,(3w)A con-

8t:al - 8exp (deg)

figuration, in the absence of errors, only the Fourier EIE
coefficients in Eq.(2) with n=2, 4, 6, 8 and 10 are 20 25 30 35 40 45 50
non-zero. Under these conditions, the amplitudes of the Photon Energy (eV)
measuredi=4, 6 and 10 Fourier coefficients can pro-

vide 8, and 3, directly, according to: Fig. 2. Spectra in the compensator retardan@ss, and (b) &,

obtained experimentally in straight-throughoints). The solid line
12 fits in (@) and (b) are based a fourth-order polynomial in photon
d,=2tan” 1{|BB'|/|B 12’\} , (5a) energy for the birefringence of MgF . The open and closed circles in
(c) denote the differences between the experimental and best-fit spec-

12 train 8, andd..

82:2'[5“1_1{|le|/|Bzo,‘} ) (5b)
and phase angle calibration, the following phase func-
where |32n,|=[(OLZn,)zJF(BZI,)z]l/z [15]. Egs. (58 and tions are exploited
(5b) do not employ phase-corrected coefficients; thus, @' —tam 48, '/a. ") =tan* oY+ b
(Csy, Cs) are not required for this calibration. Fig. 2a,b 2 (Bar'/eca) (Bar/t2n) + b2
show the resulting spectra i&, and d, The solid line _
fits adopted for subsequent data reduction assume thaf' 1,2,..8,10,11,13,16. ©®)
the birefringence of Mgk is a fourth-order polynomial  yadrant corrections to the phase functions will be

in photon energy. Quarterwave pointsiy; =3.594 8V haeded for self-consistent results. These corrections will
andEq,=3.491 eV are determined. The open and closed depend on the instrument valué®, Csy, Csy A)). It is

circleg in Fig. 2c denot.e the differences between the eyl to pre-align the fast axis of each compensator
experimental and best-fit spectra & and d,, reSpec-  (g|ative to its motor shaft to ensure thaf’  afig  are
tively. Maximum random deviations of~£0.2 areé  negr zero at the onset of data collectior=0) for a

observed; systematic deviations are smafier:0.1". reference pixel. In this way, approximate calibration
o values are known in advance. Although there are many
5.2. Offset and phase angle calibration possible ways of employing the phase functions for

. . calibration, a procedure will be described here that works
_ The angular offsets and phase shl_fts can be determinedyq|| for a nearly isotropic sample. Employir@y,,’  with
in the actualPC;(5w)SC,(3w)A configuration by com- ,, _5 "4 and 8, the following expressions can be derived
bining data collected either in a separate step after

sample mounting and alignment or during the actual P_pS.|_5CSI=(1/4)(@4/+@16’)’ (7a)
sample measurement, i.e. in the self-calibration mode
(most often using the starting sample surface prior to A—AS+3C&:(1/4)(@16r_@4,), (7b)

film growth or sample processing8,15. In the offset
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Fig. 3.(a) PsandAsvs. photon energy, including the spectral average and standard deviationrange, andb) Cs; and(c) Cgs,vs. photodiode
array pixel number, including the best linear fits and the differences between the experimental data and best fits. These results were measured
reflection from an isotropic a-Si:H film.

5Cs —3Cx=(1/2)(0s'—0,). (70 the array was operated without grouping. Becatisén
Fig. 3a is determined in a procedure in which the
Egs. (7a) and (7b) are valid for the most general analyzer reading is stepped, it exhibits a lower standard
Mueller matrix, whereas Eq(7c) is valid only when  deviation (approx. 0.01) than that of Ps (approx.
maz=ma, €.9. for an isotropic sample in which case 0.07). In Fig. 3b—c,Cs; and C s exhibit linear relation-
both of these elements vanish. A third equation is Ships vs. pixel number over thie=400-800 pixel range

needed, and one of the following two functions is With identical slopes—0.003590 to within (1x10~°)°.
employed: These linear relationships arise because the time origins

for the readout of successive pixels are offset by the
single pixel readout time, of 5 ws. The slopes of the

|Bs'|2/|B4'|2z{[16CO§(8 /2)tarkA |/sin% 1} linear fits in Fig. 3b—c are in close agreement with the
expected value ofur,= —0.0036. The difference can
X(P—Pg)% P=Pg (8a) be ascribed to a stable motor speed of 1.994(tather

than 2 H2. Agreement in the measured slopes@y;

, 2 , and Cs; in successive calibrations over long periods
1B1o|*/1B] z{[16c0§(82/2)tan2A]/sm28 2} attests to the high stability of the 5:3 frequency ratio
[15].
X(A—Ag)% A=As (8b)

5.3. Spectral response calibration

Egs. (8a) and (8b) are valid for an isotropic sample _ o _
with the polarizer and analyzer aligned near the For a sample measured in transmission or reflection,
direction, respectively. To employ these functions, the in the absence of depolarizing effect,, is the specular
ellipsometric phase anglé for the sample must not be  transmittance or reflectance for incident unpolarized
near 0 or +18C°, and the amplitude ratio at the left of light. The critical step in the measurementidf, is the
Eq. (8a) or Eq. (8b) is plotted as a function of the determination of the ellipsometer spectral response func-
polarizer or analyzer reading neBg or As respectively.  tion Ioo [8,15. In the transmission geometrs, can be
Such a plot is fitted to a parabola whose minimum obtained easily by removing the sample; in this case,
occurs e|ther atP=PS or at A=AS- |f PS or AS |s Mll:l SO IQOZIQ/CIO For a I‘ea| time measurement in
determined in this way, then Eq$7a)—(7¢) can be reflection, if the nature of the initial starting surface at
solved for the remaining three calibration angles. =0 is known, then this surface can be employed as a

As an example of calibration results applying Egs. calibration standard for subsequent measurements. Using
(7a)—(7c) and Eq.(8h), Fig. 3 shows(a) Ps and Ag this approach, one can write:
vs. photon energy, antb) Cs; and (c) Cs,Vvs. photo- % 0
diode array pixel number as measured in reflection from w(0) o (Nao )R 0) 9)

isotropic amorphous silicofa-Si:H). For these results, - 15'(0)aqt)
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wherel,'(0) and,/(r) are the measured d.c. componentswhere

of the waveform obtained from the known starting
surface at=0 and from the unknown surface at time
respectively. Thei, spectra are obtained for the corre-

sponding surfaces after substituting the Fourier coeffi-

cients(ay,, B,) into Eq.(3), and in turn substituting
the transformed coefficients into Edq4a). Finally,
R,(0)=M,,(0) and M ,(?) are the assumed known and
unknown (1,1) elements of the unnormalized Mueller
matrices for the surface a0 and timer, respectively.

6. Mueller matrix conversion to complex amplitude
ratios

Determination of the three complex amplitude ratios
from the Mueller matrix starts from the Jones-to-Mueller
conversion equatiofl§],
Mp=A-(J®J*)-A~1, (10
whereM; is the Mueller matrix assuming a perfect, i.e.
non-depolarizing, sample. In the reflection geomeiry,
is the unnormalized Jones matrix with elemeits=
Top J12="ps J 2=1 sp@NAJ 71 sThus, the following
definitions have been adopted for the reflection coeffi-
cients:  r;=[E);//(E)gy-0 and r;=[(E);/
(E)]l(g) -0, Where the inner subscripts indicate the
reflected(r) and incident(i) electric fields and the outer
subscripts(i, j) denote the possible combinations(pf
s) or (s, p) directions. Finally, in Eq.(10), A is the
4x4 Jones-to-Mueller conversion matrix with,,;=
Ap=An=—A=Az=Asxl, Az —A 45 and
with all other elementsi;=0 (adopting the & time
convention for the electric fields as in R¢L8]). If one
allows the possibility of sample imperfections that gen-
erate completelyandom depolarization, then
M=pMp+(1-p)Mp, 1D
whereM, is the Mueller matrix for a perfect depolarizer
[(Mp)11=M,; all other elements(M p);=0], and p

describes the fraction of the polarized irradiance reflect-

ed from the sampl¢l19].

Substitution of Eq.(10) along with the measured
normalized elements d¥l, m,;=M,/M,,, into Eq.(11)
followed by inversion yields expressions for the complex

amplitude reflection ratios  ppp=rpy/rss=
tany,, explidyy), ps=rsfr sstany xpliA ), and
Pps=Tpd I s&=tand ,expiA Jsthat defineM

ppp=[(Maztm 49 +i(m 357-m 43]/D 3 (LR) (129
psp: [(m 13— m 2:9+l(m 14— M 2)]/D i (UR) (12b)
Pps™ [((mag—m 3 —i(m 4—m 43]/D 4 (LL) (120

19

Di=p—myp—moytm; (12d)
At the right of Egs.(128—(120) ‘LR’, ‘UR’, and ‘LL’
indicate that the numerator is evaluated from the lower
right, upper right, and lower left 22 blocks ofM.

The parametep is also derived in the inversion,
yielding an expression that utilizes all 15 elements of
the normalized Mueller matrix:

p=(b?+c)Y2—b, (139

b=(mzp—mip—mz) /3, (13b)

c=[(mapp—mip—m )%+ (m 15~ m °+
(mya—moa)?+ (mg—m %+ (m 4-m H°+
(maa—mag)®+ (m aztm 42%/3. (130)

This parameter can be used, for example, to account
for the collection of multiply-scattered light by the
polarization detection arm, an effect that may occur in
the measurement of sculptured thin films due to sample
imperfections such as macroscopic roughness or void
structures(see Section ) The parameter may also be
used to simulate the effect of spectrograph stray light,
an ellipsometer imperfectiof20]. In fact, the second
term at the right in Eq(11) gives rise to an additional
d.c. irradiance contribution at the detector, i.e. above
that generated by a perfect sample, and the stray light
contribution at the detector is expected to appear simi-
larly in form.

Second independent expressions for the off-diagonal
amplitude reflection ratios can be derived using more
involved expressions from combinations of Mueller
matrix blocks:

psp=1(magtm 4d[(m 3t m Y+i(m sm Y

— (mga—m ) [(m 4+ m 4)

—i(mg+m3r)]} /DD, (LL+LR) (149
pps={ (magtm 4d[(m 1stm 3—i(m 13 m Y

+ (mga—mad[(m 15t m 29

+i(miz+mo9]} /DD,y (UR+LR) (14b)
where
Do=p+myptmotmy, (140

Only the amplitude squares of the complex reflection
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ratios can be deduced from the upper left block:

|ppp|2=D2/DJJ (UL) (159
|Psp|2=(P+m12_m 2—m ) /D 3 (UL) (15b)
lppsl>=(p—mztm —m ,)/D 3 (UL). (150

It is of interest to consider very weak anisotropy, for
example, that induced at the surface of a cubic semi-
conductor [21]. Then in Egs.(129—(12d) and Egs.
(15a—-(150), D;=4coSy,, and so measurements of
weak anisotropy will fail when,,~90°. Similarly in
Egs.(148—(14¢), D,D,=4sirt 2., and these measure-
ments will fail whenys,,=0° or 9C¢°. Finally, Egs.(15b)
and (15¢) are insensitive to the presence of weak
anisotropy owing to the measurement of amplitude-
squared ratios.

7. Applications
Three different sets of results from the dual rotating-

compensator multichannel ellipsometer will be present-
ed: (i) assessment of the isotropy of an a-Si:H film
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Fig. 4. Normalized Mueller matrix elements from th&2 URB and

prepared by plasma-enhanced chemical vapor deposition.LB for a-Si:H measured in reflection at an angle of incidence of

(PECVD); (ii) measurement of the surface-induced
optical anisotropy i(110) Si; and(iii) measurement of
the local form birefringence of a chiral thin film.

Fig. 4 shows the normalized Mueller matrix elements
from the 2x2 URB and LLB for a PECVD a-Si:H film
measured in reflection at an angle of incidencefgt
69.90+0.05. The calibration data obtained prior to this

6,=69.90+ 0.05". The waveform spectra were obtained as an average
of 20 optical cycles, for an overall acquisition time of 5 s.

and LLB of the Mueller matrix do not vanish, but show
maximum amplitudes of~6x 103, attributed to sur-
face-induced optical anisotropy. In support of this inter-
pretation, the amplitudes of these matrix elements vanish

measurement are given in Fig. 3. For an isotropic samplewhen the sample is rotated so that the anglés ~0
such as this one, the 8 depicted matrix elements shouldor 90.

vanish. The waveform spectra used for the determination

of the entire Mueller matrix for a-Si:H were obtained as
an average of 20 optical cycles, yielding an overall
acquisition time of 5 s. Fig. 4 shows that the spectrally-
averaged values of the eight depicted Mueller matrix
elements are X102 or less, and the spectral standard
deviations are 3102 or less. Such results attest to the
very high accuracy of the multichannel instrument, as
will be discussed further in the second demanding
application.

Fig. 5 shows all normalized Mueller matrix elements
for a (110 Si wafer surface measured in reflection at
0,=69.90+0.05. These spectra were collected in 12 s,
taking an average of 48 detector waveforms over 24

Fig. 6 shows the results far,,, pps p sp @andp derived
from the Mueller matrix under the same measurement
conditions as Fig. 5, combining selected results from
Eq. (129—-Eg. (12d), Eq. (13a—Eg.(130), Eg. (14a—

Eq. (140, and Eq.(158-Eq. (150). In Fig. 6, p,, was
obtained from Eq(12a), whereas the low energy<3
eV) parts of Réps,) and Rép,J) were obtained from
Egs. (14a and (12¢), respectively. For Rgs,) and
Re(p,s at higher energy and for Ifpg) and Inp )
over the full energy range, the results from E¢E2b)
and (12¢) were averaged with those of Egd.4a and
(14b), respectively. This overall approach provided the
highest accuracy spectra m, and p,, In fact, for a
very thin uniaxial surface layer, it can be shown that

mechanical cycles. In this case, the sample was etcheds,= — ps[22], and Fig. 6 reveals this characteristic at

in situ in a windowless cell using 5 vol.% HF in

a high level of accuracy, withinv1x10~4. Finally, the

methanol and was subsequently measured under N gasleviations ofp from unity in Fig. 6 are attributed to

flow in order to maintain a clean surface. The wafer
was oriented for a~45° angle, denoted, between the
[001] principal axis in the sample surface and the line
of intersection of the plane of incidence with the surface.
For this surface the eight elements of thx2 URB

instrument imperfections, dominated in this case by
spectrograph stray light. Allowing to deviate from
unity in the analysis has no effect on the determination
of pys and ps; however, it significantly improves the
agreement of thel,, spectra obtained independently
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Fig. 5. Normalized Mueller matrix elements for a clegdri0) Si wafer surface measured in reflectionfet 69.90+ 0.05. The waveform spectra
were obtained as an average of 48 optical cycles, for an overall acquisition time of 12 s.

from Egs. (123 and (153, reducing the difference at Fig. 8 shows the results for the complex amplitude
3.5 eV, for example, from 0.2 to 0.@5Interpretation of  transmission ratiosr,,, 75, and 7, derived from the
the spectra irp,,, p,s @andp 5,0f Fig. 6 in terms of the ~ Mueller matrix of Fig. 7 combining the expressions
bulk isotropic and surface anisotropic optical properties from Egs.(128—(12d), Egs.(13a—(130), Egs.(14a-
will be provided in a separate article in these Proceed- (14c) and Eq. (153 (but with p replaced by7). In
ings [23]. these plots, which focus on the spectra in the resonance
Fig. 7 shows all normalized Mueller matrix elements
measured in transmission at normal incidence for a 4.7
pum thick MgF, chiral thin film deposited by glancing 0.0
angle deposition with simultaneous substrate rotation. A
total of 12.3 turns yields a right-handed helicoidal
structure(counterclockwise rotation in progression from
substrate to film surfagewith a pitch of 0.382um. The 0.5
spectra in Fig. 7 were derived from an average of 10 &~
detector waveforms for an acquisition time of 2.5 s. In 2 2L
the absence of optical anisotropy, the Mueller matrix Vg 0 pssthan
should revert to the identity matrix. The dominant < |
feature of anisotropy present in all off-diagonal Mueller
matrix elements is a resonance analogous to the Cotton

Q
a
Q
=
o

Im (ppp)

effect [24] near A,=440 nm or E,=2.8 eV. This = 21
resonance occurs when the wavelength of light in the "’% 0 &
material A /n,,, matches the helicoid pitch. Here,n,, a -2

is the average of the two principal indices of refraction [ . . . .
that describe the local uniaxial structure. At the reso- CL1.00 T ettty
nance, the electric field vector for left-circularly polar- =, | . .
ized light rotates spatially in phase with the right-handed "> 3 4
helicoids when the sample is illuminated from the Photon Energy (eV)
ambient side, as is the case here. Applying the expres-

SI_On Nnav="Ao/ P, yields Mav™ 1.16 W_hICh IS CODSIStem Fig. 6. Results fop,,, pps p sp andp derived from the Mueller matrix
with the large volume fraction of void®.58) estimated  for clean(110) Si obtained from Eq(128—(12d), Eqs.(138—(130)
for this film [25]. and Eq.(14a).
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Fig. 7. Normalized Mueller matrix elements measured in transmission at normal incidence fqum 4hick MgF, chiral thin film. The waveform
spectra were obtained as an average of 10 optical cycles, for an overall acquisition time of 2.5 s.

region, the real and imaginary parts af, and 7,shave
been obtained in two different ways, as hasg*=
tamy,, Results designatedrs, and 7,5 have been
obtained from the analogs of Eqé12b) and (12¢),
whereas those designatetl,; and 7,5 have been
obtained from the analogs of Eq&l4a and (14b). In
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addition, the results fofr,,|*> have been obtained either
by computing the modulus of,, as in Eq.(12a), or
directly as in Eq.(15a. Overall excellent agreement is
found for results calculated independently from different
parts of the Mueller matrix. It is clear that higher quality
results are obtained for Re,,) and Ré 7,9 by applying
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Fig. 8. Results forr,,, 75, and . derived from the Mueller matrix of Fig. 7 for the MgF chiral thin film. Results designatgénd 7 chave
been obtained from the analogs of E¢b2a—(12d) whereas those designateg,; and 7,5, have been obtained from the analogs of Hdg.a)—-
(140). The results for7,,> have been obtained by computing the modulusrgfas in Eq.(128 (solid point9, and directly as in Eq(15a)

(open points.
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Egs. (148—(140); however, equally good data can be

obtained for Infrs,) and Im(r,) either from Egs.
(129—(12d) or from Egs. (148—(140). In fact, the
agreement of these latter two pairs of spedirathin

~(1-3) X104 is remarkable considering their rela-
tively low amplitude and different origin. The analysis
of the spectra of Fig. 8 in terms of the structure and
optical properties of the chiral film is beyond the scope

of the present article and will be treated elsewh@@.

To summarize, such modeling has shown that a birefrin-
genceAn(\y) of 0.066 associated with the local uniaxial

dielectric responsée can be extracted by four different
methods. Averaging the results obtained by these meth-
ods provides accuracy at the level of 0 jnfor
simultaneous real time determination of bulk isotropic
and surface anisotropic optical responses of crystalline
semiconductors.
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8. Conclusions

A multichannel ellipsometer in the dual rotating-
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