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Abstract

A multichannel ellipsometer in the dual rotating-compensator configuration has been designed and constructed for applications
in real time Mueller matrix ellipsometry(approx. 2–5 eV) of anisotropic surfaces and films. The sequence of optical elements
for this instrument is denotedPC (v )SC (v )A, whereP, S, andA represent the polarizer, sample, and analyzer.C (v ) and1r 1 2r 2 1r 1

C (v ) represent two MgF biplate compensators that rotate at frequencies ofv y2ps10 Hz andv y2ps6 Hz, synchronized2r 2 2 1 2

for a ratiov :v of 5:3. Spectra in the 16 Mueller matrix elements of a transmitting or reflecting sample can be established from1 2

the 25 non-zero Fourier coefficients of the irradiance waveformacquired in a single 0.25 s optical cycle. Initial high speed
Mueller matrix measurements have been performed on weakly anisotropic samples that push the instrument to its precisiony
accuracy limits. These include the(110) Si surface with maximum cross-polarization ellipsometric angles ofc ;0.18 andps

nanostructured thin films with maximumc ;18.ps

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Multichannel ellipsometers have been developed and
applied as powerful tools for studying thin film growth
and surface modificationw1x. The simplest such instru-
ments, used since;1990, are based on rotating-polar-
izer principles w2x and have several limitations. The
most serious one arises from the inability of a rotating
polarizer to measure the third normalized Stokes vector
component of the light beam reflected from the sample
w3x. Thus, precisionyaccuracy is degraded for analysis
of reflected polarized light having a small ellipticity
angle x. In addition, unrecognized depolarization gen-
erates experimental errors. Since;1997, rotating-com-
pensator multichannel ellipsometers have been used that
overcome these limitations by providing all three com-
ponents of the Stokes vectorw4x. These instruments
provide high precisionyaccuracy spectra inx over its
full range (y458FxF458), and, thus as the sign ofx
(inaccessible by rotating polarizer). In addition, the
rotating-compensator instrument provides the degree of
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polarization of the reflected beam, which reveals sample
non-uniformities andyor instrument errors.

For optically anisotropic materials, even the single
rotating-compensator multichannel ellipsometer may be
insufficient for real time characterization. The ultimate
solution in this case is to measure the entire Mueller
matrix of the sample, while retaining the high speed
required for real time spectroscopy. A number of Mueller
matrix ellipsometer designs have been proposed, includ-
ing configurations with dual rotating-compensatorsw5–
8x or phase modulatorsw9x. Other designs require
multiple measurements in different optical configura-
tions, and so are unsuitable for real time materials
analysis w10–14x. In this study, the performance and
applications are reported for a recently-developed mul-
tichannel Mueller matrix ellipsometer designed in the
PC (v )SC (v )A configuration as described in Ref.1r 1 2r 2

w8x (see Fig. 1). The polarization generation arm
includes a fixed polarizer and rotating compensator, and
the polarization detection arm includes a second rotating
compensator and fixed analyzer. With a frequency ratio
v :v of 5:3, this instrument provides the entire Mueller1 2

matrix at;150 spectral positions from;2 to 5 eV in
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Fig. 1. Schematic diagram of the dual rotating-compensator multichannel ellipsometer.

a time as short as 0.25 s, a single optical period of the
dual rotating-compensators.

2. Theoretical description

For the dual rotating-compensator multichannel ellip-
someter withv s5v and v s3v, the time-dependent1 2

waveform predicted at each pixel of the array detector
can be expressed in terms of the Mueller matrix of the
samplew8x. The waveform used for theoretical analysis
is given by
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where { a , (a , b ); ns1,«,16} define the d.c. and0 2n 2n

unnormalized a.c. Fourier coefficients. Among the 32
possible a.c. Fourier coefficients under the summation
in Eq. (1a), the eight coefficients withns9, 12, 14 and
15 vanish even for the most general Mueller matrix.
The phases of the individual Fourier components,{ f ;2n

ns1,«,8, 10, 11, 13, 16} in Eq. (1a) are given in
terms of the phase angles(C , C ) of the two rotatingS1 S2

compensators as follows:
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where 2ns3Lq5K, applicable forns8, 11, 13, 16.

Here, (C , C ) are defined by the equations sC 9S1 S2 1

5(vtyC ) and s3(vtyC ), where andC 9 C 9 C 9S1 2 S2 1 2

are the true angles of the fast axes of the first and
second compensators. Thus,y5C andy3C are theS1 S2

angles of the fast axes atts0, defined as the onset of
data acquisition for the given pixel(or pixel group).
The d.c. and d.c.-normalized a.c. coefficients can be
written collectively as{ I , (a , b ); ns1,«,16} and0 2n 2n

are given byI sa i , a sa ya , and b sb ya .0 0 0 2n 2n 0 2n 2n 0

The average irradiance in the waveformI can be0

expressed as the product of three factors(i) the ellip-
someter spectral response functionI , (ii) the d.c.00

coefficienta , and(iii ) the(1,1) Mueller matrix element0

M of the sample.11

3. Data collection

For an error-free system in the dual-rotating compen-
sator configuration with the angular frequenciesv s1

5vs2p(10) s and v s3vs2p(6) s , they1 y1
2

irradiance at any given pixel(or pixel group) obeys the
following experimental expressionw8x:
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where{ I 9, ; ns1, 2,«, 16} are the d.c. anda 9, b 9Ž .0 2n 2n

d.c.-normalized a.c. Fourier coefficients to be deter-
mined experimentally. Eq.(2) differs from Eq.(1a) in
that the former waveform does not include the compen-
sator phase anglesf . These terms are omitted from2n

the experimental phases because they cannot be deter-
mined until a calibration is performed that yields(C ,S1

C ). If the detector is readN times per fundamentalS2

optical period(pyv)s0.25 s, each read-out with the
same exposure time oft spy(Nv)s(4N) s, thenNy1

e

irradiance waveform integrals are generated. ForNs36
and t s6.94 ms, one can form a set of 36 equations ine
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36 unknowns for each spectral position by extending
the series in Eq.(2) to include all even Fourier coeffi-
cients up to (but not including ). The corre-b 9 a 936 36

sponding 36=36 matrix of coefficients can be inverted
to deduce{ (ms1,«,17), (ns1,«,18)} .I 9, a 9 b 90 2m 2n

Of these 36 quantities, 11 Fourier coefficients should
vanish (corresponding tom, ns9, 12, 14, 15, 17;ns
18).

4. Data reduction

Once the d.c. and normalized a.c. Fourier coefficients
{ ; ns1,«,8, 10, 11, 13, 16} are deter-I 9, a 9, b 9Ž .0 2n 2n

mined and calibration data for(C , C ) are availableS1 S2

(see Section 5), the next step is a phase correction of
the coefficients performed by applying

T Ta b sR f a 9b 9 ;Ž . Ž .Ž .2n 2n 2n 2n 2n

ns1, 2,«, 8, 10, 11, 13, 16 (3)Ž .

where T denotes the transpose of the row vector and
R(f ) is the 2=2 rotation transformation matrix for2n

the anglef w8x. From the phase-corrected Fourier2n

coefficients, the normalized Mueller matrix elements
{ m sM yM ; is1,«,4; js1,«,4} can be determined.ij ij 11

For the upper left 3=3 block of m , there is only oneij

possible set of equations for this purpose, whereas for
the 4th row and column, multiple methods are possible.
Here, the following set of equations is applied:
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along with M sI y(I a ). In Eqs. (4a)–(4j), B s11 0 00 0 2n

a qib , B *sa yib , s ssin (d y2), and t s2
2n 2n 2n 2n 2n j j j

tan (d y2) ( js1,2), where d ( js1,2) represent the2
j j

slow-to-fast axis phase shifts for the first and second
rotating compensators. For the evaluation ofM sij

M m from { I , (a , b ), ns1,«,8, 10, 11, 13, 16}11 ij 0 2n 2n

in data reduction, one requiresI , d , d , P9sPyP ,00 1 2 S

A9sAyA , all of which are determined in calibration.S

Here P9 and A9 are the true angles of polarizer and
analyzer transmission axes given in terms of nominal
readings,P andA, and offset corrections,P andA .S S

5. Calibration

For the dual rotating-compensator multichannel ellip-
someter, the usual calibration sequence involves:(i)
measurement of the retardance spectrad and d in1 2

straight-through,(ii) determination of the optical ele-
ment offset and phase angles(P , C , C , A ) withS S1 S2 S

the sample in place after its alignment, and(iii ) meas-
urement of the ellipsometer spectral responseI from00

initial measurements of the starting samplew15x. Thus,
with this sequence,d and d are determined once in1 2

the initial development of the ellipsometer(or after any
major system realignment) using the straight-through
PC (5v)C (3v)A configuration without a sample. The1r 2r

offset and phase angles are determined in a separate
step after mounting and aligning the sample. Although
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Fig. 2. Spectra in the compensator retardances(a) d and (b) d ,1 2

obtained experimentally in straight-through(points). The solid line
fits in (a) and (b) are based a fourth-order polynomial in photon
energy for the birefringence of MgF . The open and closed circles in2

(c) denote the differences between the experimental and best-fit spec-
tra in d andd .1 2

self-calibration(i.e. calibration using the measured Fou-
rier coefficients without a separate step) is possible for
an isotropic sample, higher accuracy is achieved by
performing calibration vs. polarizer and analyzer angular
readings. Finally, slight differences in beam path through
the second compensator, resulting when measuring sam-
ples with differing alignments, can lead to variations in
the appropriated for data analysis of such samples.2

This problem can be minimized in an alternative cali-
bration in which d is measured with the sample in2

place after the offset and phase angle calibration, but
before the spectral response calibration.

5.1. Retardance calibration

In general, an internal alignment procedure is neces-
sary to ensure that the fast axes of the two plates of
each MgF biplate compensator are precisely orthogonal,2

and thereby to minimize artifacts in their retardance
spectraw16,17x. Here, it is assumed that such a procedure
has been performed for both compensators. For meas-
urements in the straight-throughPC (5v)C (3v)A con-1r 2r

figuration, in the absence of errors, only the Fourier
coefficients in Eq.(2) with ns2, 4, 6, 8 and 10 are
non-zero. Under these conditions, the amplitudes of the
measuredns4, 6 and 10 Fourier coefficients can pro-
vide d andd directly, according to:1 2

1y2y1 ) ) ) )d s2tan B 9 y B 9 , (5a)µ ∂1 8 12

1y2y1 ) ) ) )d s2tan B 9 y B 9 , (5b)µ ∂2 8 20

where w15x. Eqs. (5a) andw z2 2 1y2x |) )B 9s a 9 q b 9Ž . Ž .2n 2n 2ny ~

(5b) do not employ phase-corrected coefficients; thus,
(C , C ) are not required for this calibration. Fig. 2a,bS1 S2

show the resulting spectra ind and d The solid line1 2

fits adopted for subsequent data reduction assume that
the birefringence of MgF is a fourth-order polynomial2

in photon energy. Quarterwave points ofE s3.594 eVQ1

andE s3.491 eV are determined. The open and closedQ2

circles in Fig. 2c denote the differences between the
experimental and best-fit spectra ind and d , respec-1 2

tively. Maximum random deviations of;"0.28 are
observed; systematic deviations are smaller,-"0.18.

5.2. Offset and phase angle calibration

The angular offsets and phase shifts can be determined
in the actualPC (5v)SC (3v)A configuration by com-1r 2r

bining data collected either in a separate step after
sample mounting and alignment or during the actual
sample measurement, i.e. in the self-calibration mode
(most often using the starting sample surface prior to
film growth or sample processing) w8,15x. In the offset

and phase angle calibration, the following phase func-
tions are exploited

y1 y1Q9 stan b 9ya 9 stan b ya qf ;Ž . Ž .2n 2n 2n 2n 2n 2n

ns1, 2,«,8, 10, 11, 13, 16. (6)

Quadrant corrections to the phase functions will be
needed for self-consistent results. These corrections will
depend on the instrument values(P9, C , C , A9). It isS1 S2

useful to pre-align the fast axis of each compensator
relative to its motor shaft to ensure that and areC 9 C 91 2

near zero at the onset of data collection(ts0) for a
reference pixel. In this way, approximate calibration
values are known in advance. Although there are many
possible ways of employing the phase functions for
calibration, a procedure will be described here that works
well for a nearly isotropic sample. Employing withQ 92n

ns2, 4 and 8, the following expressions can be derived

PyP q5C s 1y4 Q 9qQ 9 , (7a)Ž .Ž .S S1 4 16

AyA q3C s 1y4 Q 9yQ 9 , (7b)Ž .Ž .S S2 16 4
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Fig. 3.(a) P andA vs. photon energy, including the spectral average and standard deviation(S.D.) range, and(b) C and(c) C vs. photodiodeS S S1 S2

array pixel number, including the best linear fits and the differences between the experimental data and best fits. These results were measured in
reflection from an isotropic a-Si:H film.

5C y3C s 1y2 Q 9yQ 9 . (7c)Ž .Ž .S1 S2 8 4

Eqs. (7a) and (7b) are valid for the most general
Mueller matrix, whereas Eq.(7c) is valid only when
m sm , e.g. for an isotropic sample in which case23 32

both of these elements vanish. A third equation is
needed, and one of the following two functions is
employed:

w z22 4 2 2x |) ) ) )B 9 y B 9 f 16cos d y2 tan D ysin dŽ .6 4 1 1µ ∂y ~

2= PyP ; PfP (8a)Ž .S S

w z22 4 2 2x |) ) ) )B 9 y B 9 f 16cos d y2 tan D ysin dŽ .10 4 2 2µ ∂y ~

2= AyA ; AfA (8b)Ž .S S

Eqs. (8a) and (8b) are valid for an isotropic sample
with the polarizer and analyzer aligned near thep-
direction, respectively. To employ these functions, the
ellipsometric phase angleD for the sample must not be
near 08 or "1808, and the amplitude ratio at the left of
Eq. (8a) or Eq. (8b) is plotted as a function of the
polarizer or analyzer reading nearP or A , respectively.S S

Such a plot is fitted to a parabola whose minimum
occurs either atPsP or at AsA . If P or A isS S S S

determined in this way, then Eqs.(7a)–(7c) can be
solved for the remaining three calibration angles.

As an example of calibration results applying Eqs.
(7a)–(7c) and Eq.(8b), Fig. 3 shows(a) P and AS S

vs. photon energy, and(b) C and (c) C vs. photo-S1 S2

diode array pixel number as measured in reflection from
isotropic amorphous silicon(a-Si:H). For these results,

the array was operated without grouping. BecauseA inS

Fig. 3a is determined in a procedure in which the
analyzer reading is stepped, it exhibits a lower standard
deviation (approx. 0.018) than that of P (approx.S

0.078). In Fig. 3b–c,C andC exhibit linear relation-S1 S2

ships vs. pixel number over theks400–800 pixel range
with identical slopesy0.0035908 to within (1=10 )8.y6

These linear relationships arise because the time origins
for the readout of successive pixels are offset by the
single pixel readout timet of 5 ms. The slopes of thex

linear fits in Fig. 3b–c are in close agreement with the
expected value ofvt sy0.00368. The difference canx

be ascribed to a stable motor speed of 1.994 Hz(rather
than 2 Hz). Agreement in the measured slopes ofCS1

and C in successive calibrations over long periodsS2

attests to the high stability of the 5:3 frequency ratio
w15x.

5.3. Spectral response calibration

For a sample measured in transmission or reflection,
in the absence of depolarizing effects,M is the specular11

transmittance or reflectance for incident unpolarized
light. The critical step in the measurement ofM is the11

determination of the ellipsometer spectral response func-
tion I w8,15x. In the transmission geometry,I can be00 00

obtained easily by removing the sample; in this case,
M s1 so I sI ya . For a real time measurement in11 00 0 0

reflection, if the nature of the initial starting surface at
ts0 is known, then this surface can be employed as a
calibration standard for subsequent measurements. Using
this approach, one can write:

I 9 t a 0Ž . Ž .0 0
M t s R 0 (9)Ž . Ž .11 uI 9 0 a tŽ . Ž .0 0
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where and are the measured d.c. componentsI 9 0 I 9 tŽ . Ž .0 0

of the waveform obtained from the known starting
surface atts0 and from the unknown surface at timet,
respectively. Thea spectra are obtained for the corre-0

sponding surfaces after substituting the Fourier coeffi-
cients into Eq.(3), and in turn substitutinga 9, b 9Ž .2n 2n

the transformed coefficients into Eq.(4a). Finally,
R (0)sM (0) and M (t) are the assumed known andu 11 11

unknown (1,1) elements of the unnormalized Mueller
matrices for the surface atts0 and timet, respectively.

6. Mueller matrix conversion to complex amplitude
ratios

Determination of the three complex amplitude ratios
from the Mueller matrix starts from the Jones-to-Mueller
conversion equationw18x,

y1M sAØ(JØJ*)ØA , (10)P

whereM is the Mueller matrix assuming a perfect, i.e.P

non-depolarizing, sample. In the reflection geometry,J
is the unnormalized Jones matrix with elementsJ s11

r , J sr , J sr , and J sr . Thus, the followingpp 12 ps 21 sp 22 ss

definitions have been adopted for the reflection coeffi-
cients: r 'w(E ) y(E ) x and r 'w(E ) yjj r j i j E s0 ij r i( )i i

(E ) x , where the inner subscripts indicate thei j E s0( )i i

reflected(r) and incident(i) electric fields and the outer
subscripts(i, j) denote the possible combinations of(p,
s) or (s, p) directions. Finally, in Eq.(10), A is the
4=4 Jones-to-Mueller conversion matrix withA s11

A sA syA sA sA s1, A syA si, and14 21 24 32 33 42 43

with all other elementsA s0 (adopting the e timeivt
ij

convention for the electric fields as in Ref.w18x). If one
allows the possibility of sample imperfections that gen-
erate completelyrandom depolarization, then

MspM q(1yp)M , (11)P D

whereM is the Mueller matrix for a perfect depolarizerD

w(M ) sM ; all other elements(M ) s0x, and pD 11 11 D ij

describes the fraction of the polarized irradiance reflect-
ed from the samplew19x.

Substitution of Eq.(10) along with the measured
normalized elements ofM, m sM yM , into Eq.(11)ij ij 11

followed by inversion yields expressions for the complex
amplitude reflection ratios r 'r yr spp pp ss

tanc exp(iD ), r 'r yr stanc exp(iD ), andpp pp sp sp ss sp sp

r 'r yr stanc exp(iD ) that defineM :ps ps ss ps ps P

w xr s (m qm )qi(m ym ) yD , (LR) (12a)pp 33 44 34 43 1

w xr s (m ym )qi(m ym ) yD , (UR) (12b)sp 13 23 14 24 1

w xr s (m ym )yi(m ym ) yD , (LL) (12c)ps 31 32 41 42 1

where D spym ym qm (12d)1 12 21 22

At the right of Eqs.(12a)–(12c) ‘LR’, ‘UR’, and ‘LL’
indicate that the numerator is evaluated from the lower
right, upper right, and lower left 2=2 blocks ofM.

The parameterp is also derived in the inversion,
yielding an expression that utilizes all 15 elements of
the normalized Mueller matrix:

2 1y2ps(b qc) yb, (13a)

bs(m ym ym )y3, (13b)22 12 21

2 2wcs (m ym ym ) q(m ym ) q22 12 21 13 23

2 2 2(m ym ) q(m ym ) q(m ym ) q14 24 31 32 41 42

2 2x(m ym ) q(m qm ) y3. (13c)34 43 33 44

This parameter can be used, for example, to account
for the collection of multiply-scattered light by the
polarization detection arm, an effect that may occur in
the measurement of sculptured thin films due to sample
imperfections such as macroscopic roughness or void
structures(see Section 7). The parameter may also be
used to simulate the effect of spectrograph stray light,
an ellipsometer imperfectionw20x. In fact, the second
term at the right in Eq.(11) gives rise to an additional
d.c. irradiance contribution at the detector, i.e. above
that generated by a perfect sample, and the stray light
contribution at the detector is expected to appear simi-
larly in form.

Second independent expressions for the off-diagonal
amplitude reflection ratios can be derived using more
involved expressions from combinations of Mueller
matrix blocks:

{ w xr s (m qm ) (m qm )qi(m qm )sp 33 44 31 32 41 42

wy(m ym ) (m qm )34 43 41 42

x}yi(m qm ) yD D , (LLqLR) (14a)31 32 1 2

{ w xr s (m qm ) (m qm )yi(m qm )ps 33 44 13 23 14 24

wq(m ym ) (m qm )34 43 14 24

x}qi(m qm ) yD D , (URqLR) (14b)13 23 1 2

where

D spqm qm qm . (14c)2 12 21 22

Only the amplitude squares of the complex reflection
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Fig. 4. Normalized Mueller matrix elements from the 2=2 URB and
LLB for a-Si:H measured in reflection at an angle of incidence of
u s69.90"0.058. The waveform spectra were obtained as an averagei

of 20 optical cycles, for an overall acquisition time of 5 s.

ratios can be deduced from the upper left block:

2±r ± sD yD , (UL) (15a)pp 2 1

2Nr N s(pqm ym ym )yD , (UL) (15b)sp 12 21 22 1

2Nr N s(pym qm ym )yD , (UL). (15c)ps 12 21 22 1

It is of interest to consider very weak anisotropy, for
example, that induced at the surface of a cubic semi-
conductor w21x. Then in Eqs.(12a)–(12d) and Eqs.
(15a)–(15c), D f4cosc , and so measurements of2

1 pp

weak anisotropy will fail whenc f908. Similarly inpp

Eqs.(14a)–(14c), D D f4sin 2c and these measure-2
1 2 pp

ments will fail whenc f08 or 908. Finally, Eqs.(15b)pp

and (15c) are insensitive to the presence of weak
anisotropy owing to the measurement of amplitude-
squared ratios.

7. Applications

Three different sets of results from the dual rotating-
compensator multichannel ellipsometer will be present-
ed: (i) assessment of the isotropy of an a-Si:H film
prepared by plasma-enhanced chemical vapor deposition
(PECVD); (ii) measurement of the surface-induced
optical anisotropy in(110) Si; and(iii ) measurement of
the local form birefringence of a chiral thin film.

Fig. 4 shows the normalized Mueller matrix elements
from the 2=2 URB and LLB for a PECVD a-Si:H film
measured in reflection at an angle of incidence ofu si
69.90"0.058. The calibration data obtained prior to this
measurement are given in Fig. 3. For an isotropic sample
such as this one, the 8 depicted matrix elements should
vanish. The waveform spectra used for the determination
of the entire Mueller matrix for a-Si:H were obtained as
an average of 20 optical cycles, yielding an overall
acquisition time of 5 s. Fig. 4 shows that the spectrally-
averaged values of the eight depicted Mueller matrix
elements are 1=10 or less, and the spectral standardy3

deviations are 3=10 or less. Such results attest to they3

very high accuracy of the multichannel instrument, as
will be discussed further in the second demanding
application.

Fig. 5 shows all normalized Mueller matrix elements
for a (110) Si wafer surface measured in reflection at
u s69.90"0.058. These spectra were collected in 12 s,i

taking an average of 48 detector waveforms over 24
mechanical cycles. In this case, the sample was etched
in situ in a windowless cell using 5 vol.% HF in
methanol and was subsequently measured under N gas2

flow in order to maintain a clean surface. The wafer
was oriented for a;458 angle, denotedf, between the
w001x principal axis in the sample surface and the line
of intersection of the plane of incidence with the surface.
For this surface the eight elements of the 2=2 URB

and LLB of the Mueller matrix do not vanish, but show
maximum amplitudes of;6=10 , attributed to sur-y3

face-induced optical anisotropy. In support of this inter-
pretation, the amplitudes of these matrix elements vanish
when the sample is rotated so that the anglef is ;0
or 908.

Fig. 6 shows the results forr , r , r , andp derivedpp ps sp

from the Mueller matrix under the same measurement
conditions as Fig. 5, combining selected results from
Eq. (12a)–Eq.(12d), Eq. (13a)–Eq.(13c), Eq. (14a)–
Eq. (14c), and Eq.(15a)–Eq. (15c). In Fig. 6,r waspp

obtained from Eq.(12a), whereas the low energy(-3
eV) parts of Re(r ) and Re(r ) were obtained fromsp ps

Eqs. (14a) and (12c), respectively. For Re(r ) andsp

Re(r ) at higher energy and for Im(r ) and Im(r )ps sp ps

over the full energy range, the results from Eqs.(12b)
and (12c) were averaged with those of Eqs.(14a) and
(14b), respectively. This overall approach provided the
highest accuracy spectra inr and r . In fact, for asp ps

very thin uniaxial surface layer, it can be shown that
r syr w22x, and Fig. 6 reveals this characteristic atsp ps

a high level of accuracy, within;1=10 . Finally, they4

deviations ofp from unity in Fig. 6 are attributed to
instrument imperfections, dominated in this case by
spectrograph stray light. Allowingp to deviate from
unity in the analysis has no effect on the determination
of r and r ; however, it significantly improves theps sp

agreement of thec spectra obtained independentlypp
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Fig. 5. Normalized Mueller matrix elements for a clean(110) Si wafer surface measured in reflection atu s69.90"0.058. The waveform spectrai

were obtained as an average of 48 optical cycles, for an overall acquisition time of 12 s.

Fig. 6. Results forr , r , r , andp derived from the Mueller matrixpp ps sp

for clean(110) Si obtained from Eqs.(12a)–(12d), Eqs.(13a)–(13c)
and Eq.(14a).

from Eqs. (12a) and (15a), reducing the difference at
3.5 eV, for example, from 0.2 to 0.058. Interpretation of
the spectra inr , r , andr of Fig. 6 in terms of thepp ps sp

bulk isotropic and surface anisotropic optical properties
will be provided in a separate article in these Proceed-
ings w23x.

Fig. 7 shows all normalized Mueller matrix elements
measured in transmission at normal incidence for a 4.7
mm thick MgF chiral thin film deposited by glancing2

angle deposition with simultaneous substrate rotation. A
total of 12.3 turns yields a right-handed helicoidal
structure(counterclockwise rotation in progression from
substrate to film surface) with a pitch of 0.382mm. The
spectra in Fig. 7 were derived from an average of 10
detector waveforms for an acquisition time of 2.5 s. In
the absence of optical anisotropy, the Mueller matrix
should revert to the identity matrix. The dominant
feature of anisotropy present in all off-diagonal Mueller
matrix elements is a resonance analogous to the Cotton
effect w24x near l s440 nm or E s2.8 eV. This0 0

resonance occurs when the wavelength of light in the
materiallyn , matches the helicoid pitchP. Here,nav av

is the average of the two principal indices of refraction
that describe the local uniaxial structure. At the reso-
nance, the electric field vector for left-circularly polar-
ized light rotates spatially in phase with the right-handed
helicoids when the sample is illuminated from the
ambient side, as is the case here. Applying the expres-
sion n sl yP, yields n s1.16 which is consistentav 0 av

with the large volume fraction of voids(0.58) estimated
for this film w25x.

Fig. 8 shows the results for the complex amplitude
transmission ratiost , t , and t , derived from thepp sp ps

Mueller matrix of Fig. 7 combining the expressions
from Eqs.(12a)–(12d), Eqs.(13a)–(13c), Eqs.(14a)–
(14c) and Eq. (15a) (but with r replaced byt). In
these plots, which focus on the spectra in the resonance
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Fig. 7. Normalized Mueller matrix elements measured in transmission at normal incidence for a 4.7-mm thick MgF chiral thin film. The waveform2

spectra were obtained as an average of 10 optical cycles, for an overall acquisition time of 2.5 s.

Fig. 8. Results fort , t , andt , derived from the Mueller matrix of Fig. 7 for the MgF chiral thin film. Results designatedt andt havepp sp ps 2 sp ps

been obtained from the analogs of Eqs.(12a)–(12d) whereas those designatedt andt have been obtained from the analogs of Eqs.(14a)–sp1 ps1

(14c). The results for±t ± have been obtained by computing the modulus oft as in Eq.(12a) (solid points), and directly as in Eq.(15a)2
pp pp

(open points).

region, the real and imaginary parts oft andt havesp ps

been obtained in two different ways, as has±t ± s2
pp

tan c . Results designatedt and t have been2
pp sp ps

obtained from the analogs of Eqs.(12b) and (12c),
whereas those designatedt and t have beensp1 ps1

obtained from the analogs of Eqs.(14a) and (14b). In

addition, the results for±t ± have been obtained either2
pp

by computing the modulus oft as in Eq.(12a), orpp

directly as in Eq.(15a). Overall excellent agreement is
found for results calculated independently from different
parts of the Mueller matrix. It is clear that higher quality
results are obtained for Re(t ) and Re(t ) by applyingsp ps
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Eqs. (14a)–(14c); however, equally good data can be
obtained for Im(t ) and Im(t ) either from Eqs.sp ps

(12a)–(12d) or from Eqs. (14a)–(14c). In fact, the
agreement of these latter two pairs of spectrawwithin
;(1–3)=10 x is remarkable considering their rela-y4

tively low amplitude and different origin. The analysis
of the spectra of Fig. 8 in terms of the structure and
optical properties of the chiral film is beyond the scope
of the present article and will be treated elsewherew26x.
To summarize, such modeling has shown that a birefrin-
genceDn(l ) of 0.066 associated with the local uniaxial0

structure is required to generate the observed magnitudes
of the features int , t , andt in Fig. 8.pp sp ps

8. Conclusions

A multichannel ellipsometer in the dual rotating-
compensator configuration has been designed and con-
structed using optical elements fabricated from MgF to2

ensure a wide spectral range, e.g. making it possible to
add a D lamp to the standard Xe lamp in the next2

generation design. For a dual rotating-compensator sys-
tem in which the two compensators are rotated at(v ,1

v ), the (2v , 4v ) and(2v , 4v ) as well as the eight2 1 1 2 2

sum and difference frequencies are present in the detect-
ed waveform for the most general Mueller matrix of a
transmitting or reflecting sample. At the 5:3 ratio for
v :v used here, these include the 2nv frequencies1 2

where ns1, 2, 3«, 8, 10, 11, 13 and 16, and where
vy2ps2 Hz. Spectra in all 16 Mueller matrix elements
of a transmitting or reflecting sample can be determined
from the resulting 25 non-zero Fourier coefficients
acquired in(pyv)s250 ms. In the data reduction to
extract the Mueller matrix, calibration results are
employed including the polarizer and analyzer offset
angles(P , A ) and the two spectra each in the com-S S

pensator phase angle(C , C ) and retardance(d , d ).S1 S2 1 2

In high speed Mueller matrix analysis, this research
has focused on weakly anisotropic samples, including
the (110) Si surface measured in reflection and nanos-
tructured thin films measured in transmission, as
demanding initial test cases. In these studies, the equa-
tion relating the Mueller and Jones matrices, including
possible random depolarization to correct for instrument
imperfections, is inverted so that(r , r , r ) worpp ps sp

(t , t , t )x that define the(2,2)-normalized complexpp ps sp

Jones matrix can be obtained from the Mueller matrix
by multiple methods. For example, in the case of(110)
Si where r syr , the surface-induced anisotropicps sp

dielectric responseD´ can be extracted by four different
methods. Averaging the results obtained by these meth-
ods provides accuracy at the level of 10 inr fory4

simultaneous real time determination of bulk isotropic
and surface anisotropic optical responses of crystalline
semiconductors.
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