- 5. A plane traveling north at $200\,\mathrm{m/s}$ turns and then travels south at $200\,\mathrm{m/s}$. The change in its velocity is:
 - A. zero
 - B. $200 \,\mathrm{m/s}$ north
 - $C. 200 \,\mathrm{m/s}$ south
 - D. $400 \,\mathrm{m/s}$ north
 - E. $400\,\mathrm{m/s}$ south

ans: E

Section: 4–3; Difficulty: E

rq #1

- 6. Acceleration is defined as:
 - A. rate of change of position with time
 - B. speed divided by time
 - C. rate of change of velocity with time
 - D. a speeding up or slowing down
 - E. change of velocity

ans: C

Section: 4–4; Difficulty: E

- 7. Which of the following is NOT an example of accelerated motion?
 - A. Vertical component of projectile motion
 - B. Circular motion at constant speed
 - C. A swinging pendulum
 - D. Earth's motion about sun
 - E. Horizontal component of projectile motion

ans: E

Section: 4–4; Difficulty: E

- 8. Which of the following is a scalar quantity?
 - A. Speed
 - B. Velocity
 - C. Displacement
 - D. Acceleration
 - E. None of these

ans: A

Section: 4–2, 3, 4; Difficulty: E

- 9. Two bodies are falling with negligible air resistance, side by side, above a horizontal plane. If one of the bodies is given an additional horizontal acceleration during its descent, it:
 - A. strikes the plane at the same time as the other body
 - B. strikes the plane earlier than the other body
 - C. has the vertical component of its velocity altered
 - D. has the vertical component of its acceleration altered
 - E. follows a straight line path along the resultant acceleration vector

ans: A

Section: 4–6; Difficulty: E

RO #2

- 13. A bullet shot horizontally from a gun:
 - A. strikes the ground much later than one dropped vertically from the same point at the same instant
 - B. never strikes the ground
 - C. strikes the ground at approximately the same time as one dropped vertically from the same point at the same instant
 - D. travels in a straight line
 - E. strikes the ground much sooner than one dropped from the same point at the same instant ans: C

Section: 4–6; Difficulty: E

- 14. A bomber flying in level flight with constant velocity releases a bomb before it is over the target. Neglecting air resistance, which one of the following is NOT true?
 - A. The bomber is over the target when the bomb strikes
 - B. The acceleration of the bomb is constant
 - C. The horizontal velocity of the plane equals the vertical velocity of the bomb when it hits the target
 - D. The bomb travels in a curved path
 - E. The time of flight of the bomb is independent of the horizontal speed of the plane ans: C

Section: 4–6; Difficulty: E

RQ#3

15. The airplane shown is in level flight at an altitude of 0.50 km and a speed of 150 km/h. At what distance d should it release a heavy bomb to hit the target X? Take $g = 10 \,\mathrm{m/s}^2$.

- A. 150 m
- $B. 295 \,\mathrm{m}$
- C. 420 m
- D. 2550 m
- E. 15,000 m

ans: C

Section: 4–6; Difficulty: M

RQ4

- 24. A projectile is fired from ground level over level ground with an initial velocity that has a vertical component of $20 \,\mathrm{m/s}$ and a horizontal component of $30 \,\mathrm{m/s}$. Using $g = 10 \,\mathrm{m/s}^2$, the distance from launching to landing points is:
 - A. 40 m
 - B. 60 m
 - C. 80 m
 - D. 120 m
 - E. 180 m

ans: D

Section: 4–6; Difficulty: M

- 25. A stone thrown from the top of a tall building follows a path that is:
 - A. circular
 - B. made of two straight line segments
 - C. hyperbolic
 - D. parabolic
 - E. a straight line

ans: D

Section: 4–5, 6; Difficulty: E

- 26. Two projectiles are in flight at the same time. The acceleration of one relative to the other:
 - A. is always $9.8 \,\mathrm{m/s}^2$
 - B. can be as large as $19.8 \,\mathrm{m/s}^2$
 - C. can be horizontal
 - D. is zero
 - E. none of these

ans: D

Section: 4–5, 6; Difficulty: E

- 27. An airplane makes a gradual 90° turn while flying at a constant speed of $200\,\mathrm{m/s}$. The process takes 20.0 seconds to complete. For this turn the magnitude of the average acceleration of the plane is:
 - A. zero
 - $B.~40\,\mathrm{m/s}^2$
 - C. $20 \, \text{m/s}^2$
 - D. $14 \,\mathrm{m/s}^2$
 - E. $10 \,\mathrm{m/s^2}$

ans: D

Section: 4–7; Difficulty: M

28. An object, tied to a string, moves in a circle at constant speed on a horizontal surface as shown. The direction of the displacement of this object, as it travels from W to X is:

- A. ←
- В. ↓
- C. ↑
- D. /
- E. 🗸

ans: E

Section: 4–7; Difficulty: E

RQ5

29. A toy racing car moves with constant speed around the circle shown below. When it is at point A its coordinates are x = 0, y = 3 m and its velocity is $(6 \text{ m/s})\hat{i}$. When it is at point B its velocity and acceleration are:

- A. $-(6 \text{ m/s})\hat{j}$ and $(12 \text{ m/s}^2)\hat{i}$, respectively
- B. $(6 \text{ m/s}) \hat{i}$ and $-(12 \text{ m/s}^2) \hat{i}$, respectively
- C. $(6 \text{ m/s}) \hat{j}$ and $(12 \text{ m/s}^2) \hat{i}$, respectively
- D. $(6 \text{ m/s}) \hat{j}$ and $(2 \text{ m/s}^2) \hat{j}$, respectively
- E. $(6 \,\mathrm{m/s})\,\hat{\mathrm{j}}$ and 0, respectively

ans: C

Section: 4–7; Difficulty: E

```
rq 6
```

- 34. Two objects are traveling around different circular orbits with constant speed. They both have the same acceleration but object A is traveling twice as fast as object B. The orbit radius for object A is _ the orbit radius for object B.
 - A. one-fourth
 - B. one-half
 - C. the same as
 - D. twice
 - E. four times

ans: E

```
Section: 4–7; Difficulty: E
sq 7
```

- 35. A stone is tied to a 0.50-m string and whirled at a constant speed of 4.0 m/s in a vertical circle. Its acceleration at the top of the circle is:
 - A. $9.8 \,\mathrm{m/s}^2$, up

 - B. $9.8 \,\mathrm{m/s}^2$, down C. $8.0 \,\mathrm{m/s}^2$, down
 - D. $32 \,\mathrm{m/s}^2$, up
 - E. $32 \,\mathrm{m/s}^2$, down

ans: E

Section: 4–7; Difficulty: E

- 36. A stone is tied to a 0.50-m string and whirled at a constant speed of $4.0 \,\mathrm{m/s}$ in a vertical circle. Its acceleration at the bottom of the circle is:

 - A. $9.8 \,\mathrm{m/s}^2$, up B. $9.8 \,\mathrm{m/s}^2$, down
 - C. $8.0 \,\mathrm{m/s^2}$, up

 - D. $32 \,\text{m/s}^2$, up E. $32 \,\text{m/s}^2$, down

ans: D

Section: 4–7; Difficulty: E

- 37. A car rounds a 20-m radius curve at 10 m/s. The magnitude of its acceleration is:
 - A. 0
 - B. $0.20 \,\mathrm{m/s^2}$
 - C. $5.0 \,\mathrm{m/s}^2$
 - D. $40 \,\mathrm{m/s}^2$
 - E. $400 \, \text{m/s}^2$

ans: C

Section: 4-7; Difficulty: E

sq8

46. A boy wishes to row across a river in the shortest possible time. He can row at 2 m/s in still water and the river is flowing at 1 m/s. At what angle θ should he point the bow (front) of his boat?

- A. 30°
- B. 45°
- $C.~60^{\circ}$
- D. 63°
- E. 90°

ans: E

Section: 4-9; Difficulty: M

rq8

47. A girl wishes to swim across a river to a point directly opposite as shown. She can swim at 2 m/s in still water and the river is flowing at 1 m/s. At what angle θ with respect to the line joining the starting and finishing points should she swim?

- A. 30°
- B. 45°
- $C.~60^{\circ}$
- D. 63°
- E. 90°

ans: A

Section: 4–9; Difficulty: M