Chapter 15: Oscillations

Oscillations are motions that repeat themselves.

springs, pendulum, planets, molecular vibrations/rotations

Frequency f : number of oscillations in 1 sec.

unit: 1 hertz (Hz) = 1 oscillation per second = 1 s^{-1}

<u>Period T</u> : the time for one complete oscillation. It is the inverse of frequency.

T = 1/f or f = 1/T

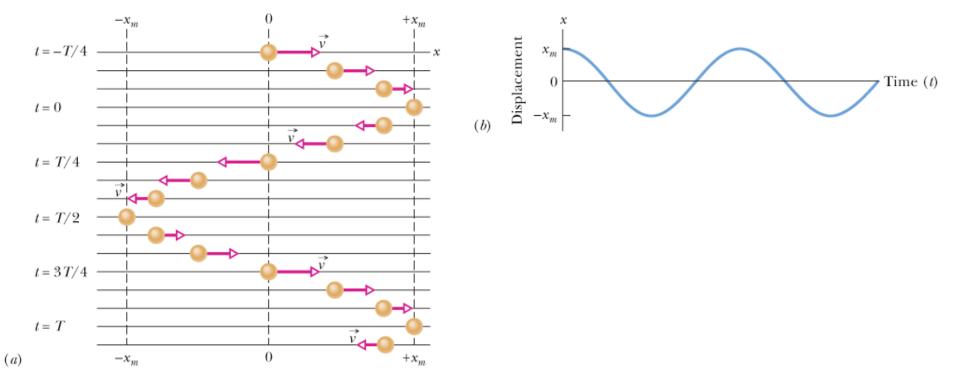


FIGURE 15-1 (a) A sequence of "snapshots" (taken at equal time intervals) showing the position of a particle as it oscillates back and forth about the origin of an x axis, between the limits $+x_m$ and $-x_m$. The vector arrows are scaled to indicate the speed of the particle. The speed is maximum when the particle is at the origin and zero when it is at $\pm x_m$. If the time *t* is chosen to be zero when the particle is at $+x_m$, then the particle returns to $+x_m$ at t = T, where *T* is the period of the motion. The motion is then repeated. (b) A graph of *x* as a function of time for the motion of (a).

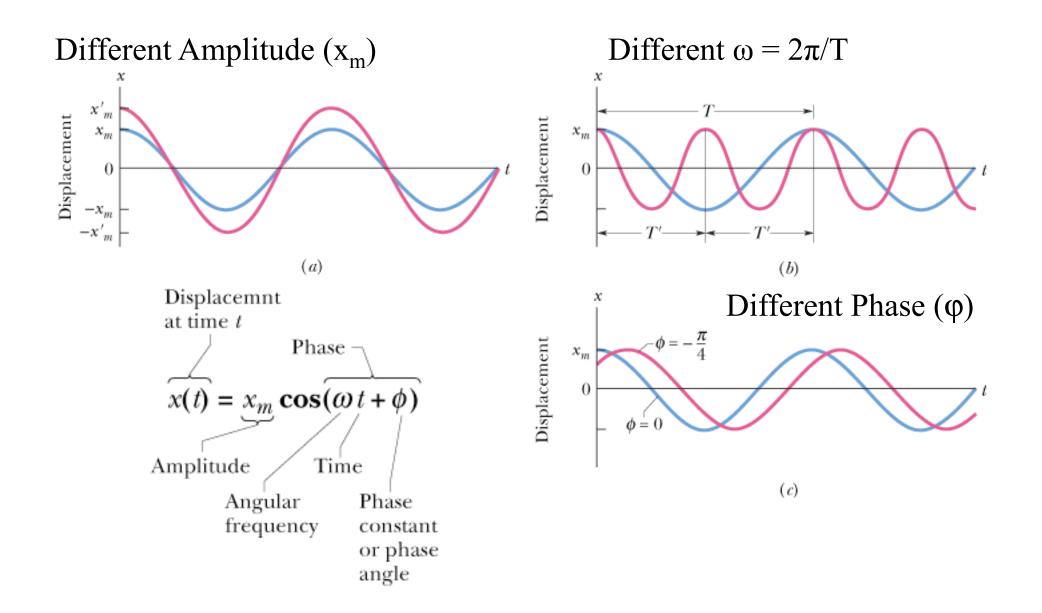
Simple Harmonic Motion

Simple harmonic motion (SHM) is the oscillation in which the displacement x(t) is in the form of

 $x(t) = x_m \cos(\omega t + \varphi)$

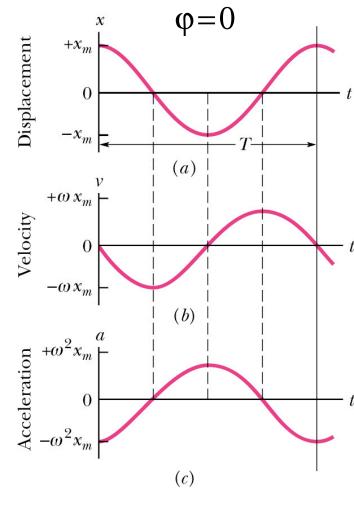
 x_m , ω and φ are constants x_m : amplitude or maximum displacement, $x_{max} = A$ $\omega t + \varphi$: phase; φ : phase constant or phase angle What is ω ? since x(t) = x(t + T) (at same place after 1 period) so $x_m \cos(\omega t) = x_m \cos(\omega(t+T))$ (let $\varphi = 0$) thus $\omega(t+T) = \omega t \rightarrow \omega T = 2\pi$

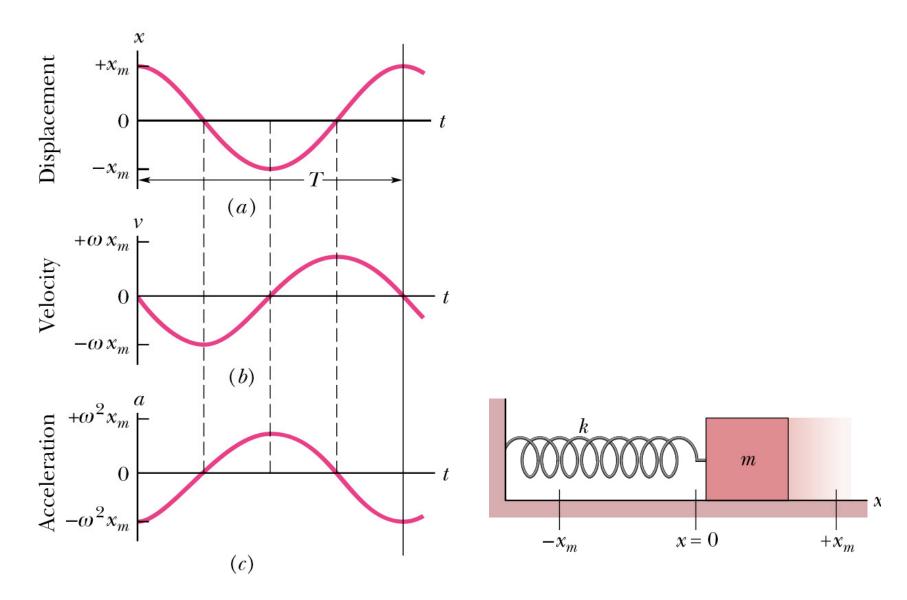
 $\omega = 2\pi/T = 2\pi f$ ω is the angular frequency (unit: rad/s)



- <u>Displacement of SHM</u>: $x(t) = x_m cos(\omega t + \varphi)$
- <u>Velocity of SHM</u>: $v(t) = dx(t)/dt = -\omega x_m sin(\omega t + \varphi)$ velocity amplitude: $v_{max} = \omega x_m$
- <u>Acceleration of SHM</u>: $a(t) = dv(t)/dt = -\omega^{2}x_{m}\cos(\omega t + \varphi) \begin{bmatrix} +\omega^{2}x_{m} \\ 0 \\ -\omega^{2}x_{m} \end{bmatrix}$ $\underline{a(t)} = -\omega^{2}x(t): a_{max} = \omega^{2}x_{m}$

In SHM, the acceleration is proportional to the displacement but opposite in sign, and the two quantities are related by the square of the angular frequency.



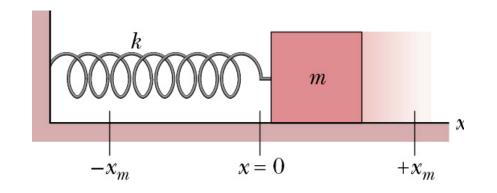


- The force law for SHM: since $a(t) = -\omega^2 x(t)$, $F = ma = -m\omega^2 x = -(m\omega^2)x$ spring force fits this criteria: F = -kx
- Therefore, the block-spring system is a linear simple harmonic oscillator with

 $k = m\omega^2$

$$\omega = \sqrt{\frac{k}{m}}$$

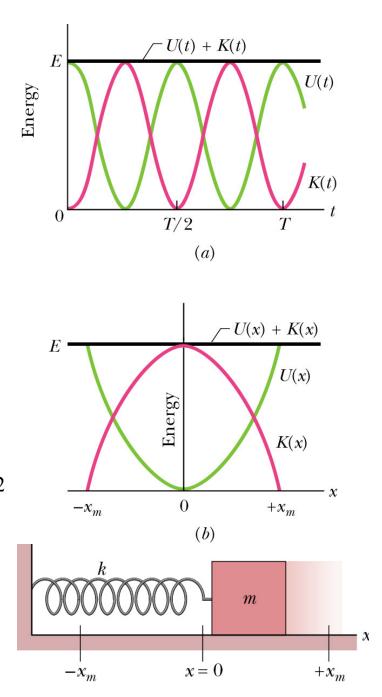
 $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$



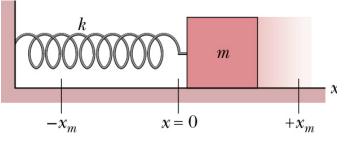
• Energy in SHM <u>Potential energy:</u> $U(t) = \frac{1}{2} kx^2 = \frac{1}{2} kx_m^2 \cos^2(\omega t + \varphi)$

<u>Kinetic energy:</u> $K(t) = \frac{1}{2} mv^{2} = \frac{1}{2} m\omega^{2}x_{m}^{2}sin^{2} (\omega t + \varphi)$ since k/m = ω^{2} $K(t) = \frac{1}{2} kx_{m}^{2}sin^{2} (\omega t + \varphi)$

 $\frac{\text{Mechanical energy:}}{\text{E} = \text{U} + \text{K} = \frac{1}{2} \text{kx}_{\text{m}}^{2} [\cos^{2}(\omega t + \phi) + \sin^{2}(\omega t + \phi)] = \frac{1}{2} \text{kx}_{\text{m}}^{2}$ $(\omega t + \phi) = \frac{1}{2} \text{kx}_{\text{m}}^{2}$ Mechanical energy is indeed a constant, and is independent of time .



The block has a kinetic energy of 3.0J and the spring has an elastic potential energy of 2.0J when the block is at x = +2.0 m.



A) What is the kinetic energy when the block is at x = 0? $E = U(x, t) + V(x, t) = 5.01 - 1/(mx^2 + V(0, t))$

$$E = U(x,t) + K(x,t) = 5.0J = \frac{1}{2} mv^2 + U(0,t)$$

2.0 3.0 0

B) What is the potential energy when the block is at x = 0?

$$U(x,t) = \frac{1}{2} kx^{2} = \frac{1}{2} kx_{m}^{2} \cos^{2}(\omega t + \varphi) = 0$$

C) What is the potential energy when the block is at x = -2.0m? U(x,t) = U(-x,t') = 2.0J

D) What is the potential energy when the block is at $x = -x_{\underline{m}}$?

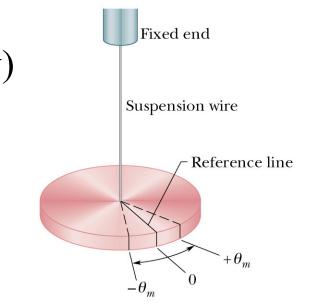
 $E = U(t) + K(t) = \frac{1}{2} kx_m^2 [\cos^2(\omega t + \varphi) + \sin^2(\omega t + \varphi)] = \frac{1}{2} kx_m^2 = 5.0J$

An angular simple harmonic oscillator

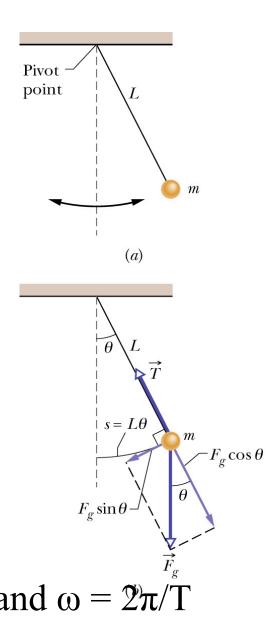
$$T = 2\pi \sqrt{\frac{m}{k}}$$
 since k = m ω^2 , $\omega = 2\pi/T$

Thus, for angular SHM we have:

$$T = 2\pi \sqrt{\frac{I}{\kappa}}$$
 (subsituting, by analogy, I for m, and κ for k)



Another SHM Device The simple pendulum **restoring torque**: $\tau = -L(\text{mg sin}\theta)$ "-" indicates that τ acts to reduce θ . For small θ , sin $\theta \sim \theta$ thus: $\tau = -Lmg\theta$ Remembering $\tau = I\alpha$, we have: $\alpha = -(Lmg/I)\theta$, hallmark of angular SHM (compare to: $a = -\omega^2 x$) Thus, $\omega = \sqrt{Lmg/I}$ I of "bob" about swinging point = mL², and $\omega = 2\pi/T$



So, $g = (2\pi/T)^2L$ –can be used to measure g!

Alternatively...

The simple pendulum

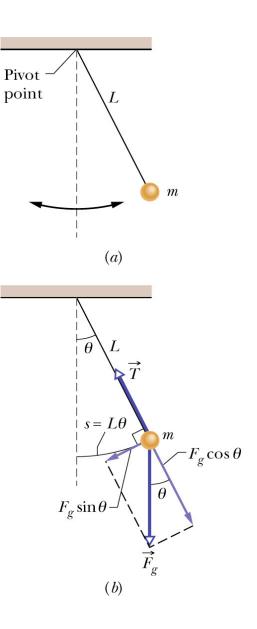
restoring torque: $\tau = -Lmg\theta$

and $\tau = -\kappa \theta$; (angular form of Hooke's Law)

so: $\kappa = mgL$,

$$T = 2\pi \sqrt{\frac{I}{\kappa}} = 2\pi \sqrt{\frac{I}{mgL}} = 2\pi \sqrt{\frac{mL^2}{mgL}} = 2\pi \sqrt{\frac{L}{g}}$$

This can be used to measure g $g = (2\pi/T)^2 L$ (same result)

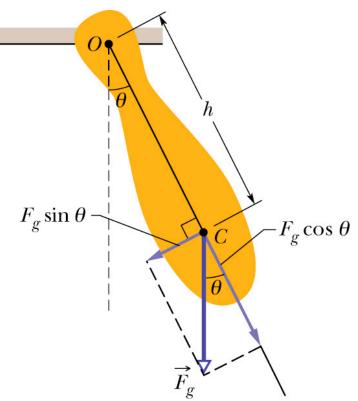


Another SHM Device - The physical pendulum (real pendulum with arbitrary shape)
h: distance from pivot point O to the center of mass. Restoring torque:
τ = -h (mgsinθ) ~ (mgh)θ (if θ is small)
κ = mgh (since τ = - κθ)

therefore:

$$T = 2\pi \sqrt{\frac{I}{\kappa}} = 2\pi \sqrt{\frac{I}{mgh}}$$

I: rotational inertia with respect to the rotation axis thru the pivot.



Sample Problem

Which of the following relationships between the force F on a particle and the particle's position x implies simple harmonic oscillation?

- 1. F = -5x
- 2. $F = -400x^2$
- 3. F = 10x
- 4. $F = 3x^2$
- 5. none of the above

Daily Quiz, March 20, 2006

$$F = ma(t) = mdv(t)/dt = -m\omega^2 x_m \cos(\omega t + \varphi) = -(m\omega^2)x(t)$$

$$m\omega^2 = 5.0$$

Which of the following relationships between the force F on a particle and the particle's position x implies simple harmonic oscillation? 2) $F = -400x^2$ 3) F = 10x(1) F = -5x $F = 3x^2$

5) none of the above

Linear SHM Summary

F(t) = -kxLinear SHM $F(t) = -m\omega^2 x(t)$ where $x(t) = x_m \cos(\omega t + \varphi)$

So, $a(t) = -\omega^2 x(t)$ "Hallmark" of SHM

With that info: $m\omega^2 = k \rightarrow \omega = \sqrt{(k/m)}$

And since $\omega = 2\pi f$, and $f = 1/T \rightarrow T = 2\pi/\omega$

so $T = 2\pi \sqrt{(m/k)}$ (units of seconds)

The period T is the easiest parameter to observe experimentally

Torsion Pendulum

 $\tau = -\kappa \theta$ Angular SHM (ASHM) *Compare to* F(t) = -kx Linear SHM (LSHM) $\tau = -\kappa \theta$ is the angular form of Hooke's law *Compare to Compare to <i>Compare to Compare to Compare to Compare to*

Since $T = 2\pi \sqrt{(m/k)}$ (linear) $T = 2\pi \sqrt{(I/\kappa)}$ (angular – I is analog to mass, and κ is like k. κ is a property of the wire, while k is a property of a spring)

We still have $\omega = 2\pi f$, and $f = 1/T \rightarrow T = 2\pi/\omega$ (to develop other relations....) Figure 15-8*a* shows a thin rod whose length *L* is 12.4 cm and whose mass *m* is 135 g, suspended at its midpoint from a long wire. Its period T_a of angular SHM is measured to be 2.53 s. An irregularly shaped objec which we call object *X*, is then hung from the same wire, as in Fig. 15-8*b*, and its period T_b is found to be 4.7 s. What is the rotational inertia of object *X* about its suspension axis?

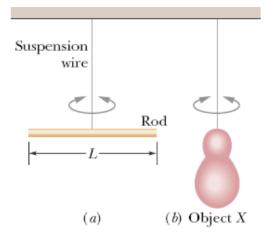


FIGURE 15-8 Two torsion pendulums, consisting of (a) a wire and a rod and (b) the same wire and an irregularly shaped object.

KEY IDEA

The rotational inertia of either the rod or object X is related to the measured period by Eq. 15-23.

Calculations: In Table 10-2e, the rotational inertia of a thin rod about a perpendicular axis through its midpoint is given as $\frac{1}{12}mL^2$. Thus, we have, for the rod in Fig. 15-8a,

$$I_a = \frac{1}{12}mL^2 = \left(\frac{1}{12}\right)(0.135 \,\mathrm{kg})(0.124 \,\mathrm{m})^2$$
$$= 1.73 \times 10^{-4} \mathrm{kg} \cdot \mathrm{m}^2.$$

Now let us write Eq. 15-23 twice, once for the rod and once for object X:

$$T_a = 2\pi \sqrt{\frac{I_a}{\kappa}}$$
 and $T_b = 2\pi \sqrt{\frac{I_b}{\kappa}}$

The constant κ , which is a property of the wire, is the same for both figures; only the periods and the rotational inertias differ.

Let us square each of these equations, divide the second by the first, and solve the resulting equation for I_b . The result is

$$I_b = I_a \frac{T_b^2}{T_a^2} = \left(1.73 \times 10^{-4} \text{kg} \cdot \text{m}^2\right) \frac{(4.76 s)^2}{(2.53 s)^2}$$

= $6.12 \times 10^{-4} \text{kg} \cdot \text{m}^2$. (Answer)

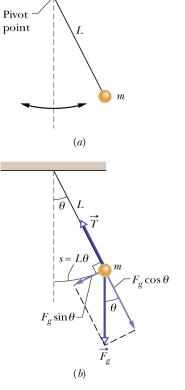
Simple Pendulum (we can go a bit farther) $\tau = -\kappa \theta$ Angular SHM

We can analyze the motion more thoroughly using: $\tau = I\alpha$ ($T = 2\pi\sqrt{(I/\kappa)}$ is still "good") $\tau = -Lmg\theta$, (since $\tau = r \times F$, and $sin(\theta) = \theta$ for small θ) So, I $\alpha = -Lmg\theta$, or: $\alpha(t) = -(Lmg/I)*\theta(t)$ Which can be compared to

 $a = -\omega^2 x$ (hallmark of LSHM)

So, for ASHM, $\omega = \sqrt{(Lmg/I)}$, or $\omega = \sqrt{(g/L)}$ since $I = mL^2$

We still have $\omega = 2\pi f$, and $f = 1/T \rightarrow T = 2\pi/\omega$, so $T = 2\pi\sqrt{(L/g)}$



Sample Problem 15-5

In Fig. 15-11*a*, a meter stick swings about a pivot point at one end, at distance h from the stick's center of mass.

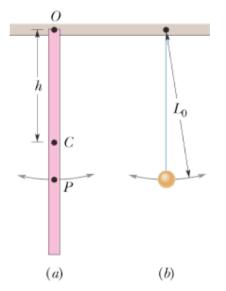


FIGURE 15-11 (a) A meter stick suspended from one end as a physical pendulum. (b) A simple pendulum whose length L_0 is chosen so that the periods of the two pendulums are equal. Point *P* on the pendulum of (a) marks the center of oscillation.

(a) What is the period of oscillation T?

KEY IDEA

The stick is not a simple pendulum because its mass is not concentrated in a bob at the end opposite the pivot point—so the stick is a physical pendulum.

Calculations: The period for a physical pendulum is given by Eq. 15-29, for which we need the rotational inertia *I* of the stick about the pivot point. We can treat the stick as a uniform rod of length *L* and mass *m*. Then Eq. 15-30 tells us that $I = \frac{1}{3}mL^2$, and the distance *h* in Eq. 15-29 is $\frac{1}{2}L$. Substituting these quantities into Eq. 15-29, we find

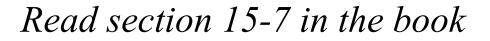
$$T = 2\pi \sqrt{\frac{l}{mgh}} = 2\pi \sqrt{\frac{\frac{1}{3}mL^2}{mg(\frac{1}{2}L)}} = 2\pi \sqrt{\frac{2L}{3g}}$$

= $2\pi \sqrt{\frac{(2)(1.00 \text{ m})}{(3)(9.8 \text{ m / s}^2)}} = 1.64 \text{ s}$. (Answer) (15-32)

Note the result is independent of the pendulum's mass m.

Simple harmonic motion and circular motion

- Circular motion of point P': angular velocity: ω θ = ωt + φ
 P is the projection of P'on x-axis: x(t) = x_mcos(ωt + φ) SHM
- P': uniform circular motion
 P: simple harmonic motion



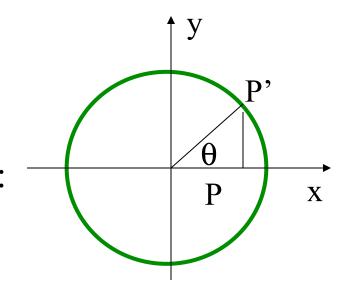
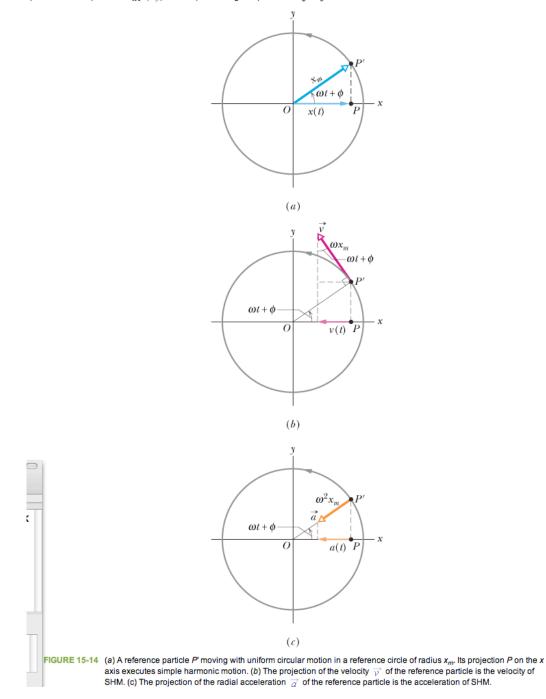
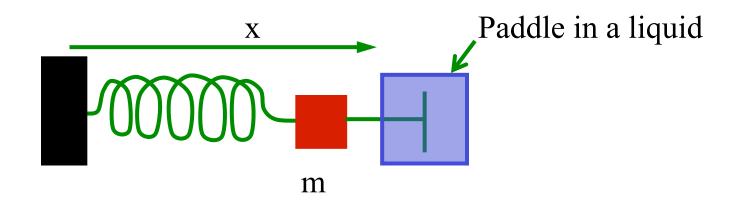


Figure 15-14a gives an example. It shows a *reference particle* P' moving in uniform circular motion with (constant) angular speed ω in a *reference circle*. The radius x_m of the circle is the magnitude of the particle's position vector. At any time t, the angular position of the particle is $\omega t + \phi$, where ϕ is its angular position at t = 0.



- When the motion of an oscillator is reduced by an external force, the oscillator or its motion is said to be damped.
- The amplitude and the mechanical energy of the damped motion will decrease exponentially with time.



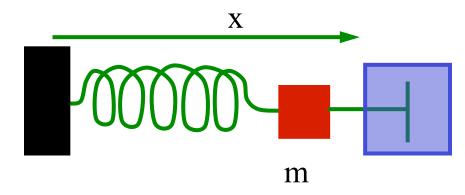
Spring Force
$$F_s(x,t) = -kx$$

Proportional to velocity, but in the opposite direction

Damping Force
$$F_d(x,t) = -bv(t) = -b\left(\frac{dx}{dt}\right)$$

Response Function (Newton's Second Law)

$$\sum_{i} F_{i}(x,t) = ma = m \left(\frac{d^{2}x}{dt^{2}}\right) \Longrightarrow -kx - b \left(\frac{dx}{dt}\right)$$

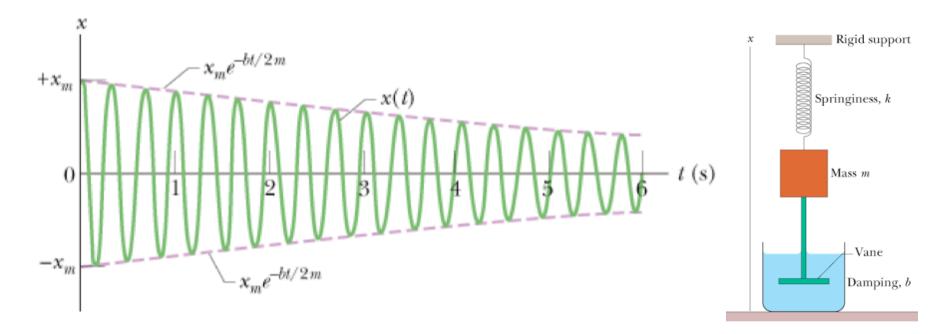


Response Function (Newton's Second Law)

Rearranging:
$$m\left(\frac{d^2x}{dt^2}\right) + b\left(\frac{dx}{dt}\right) + kx = 0$$

This differential equation has the solution:

$$x(t)_{damped} = x_m e^{-bt/2m} \cos(\omega' t + \varphi)_{\text{where,}} \quad \omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$
$$x(t)_{damped} = e^{-bt/2m} x(t)_{undamped} \qquad x \qquad for all the second seco$$



Total Energy for LSHM = U + K = $\frac{1}{2}$ k x_m² Energy for DLSHM:

 $E_{tot} \approx \frac{1}{2} kx_m^2 e^{-bt/m}$, for small damping

Forced Oscillation and Resonance

- Free oscillation and forced oscillation
- For a simple pendulum, the natural frequency $\omega_0 = \sqrt{\frac{g}{1}}$
- Now, apply an external force: F = F_m cos (ω_d t) ω_d, driving frequency x_m depend on ω₀ and ω_d, when ω_d = ω₀, x_m is about the largest this is called resonance.

examples : push a child on a swing, air craft design, earthquake

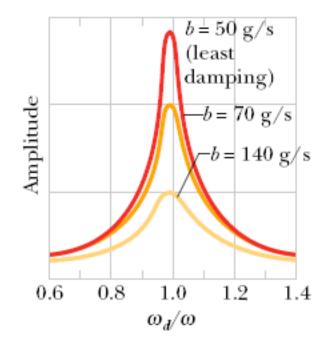


FIGURE 15-17 The displacement amplitude *x_m* of a forced oscillator varies as the angular frequency ω_d of the driving force is varied. The curves here correspond to three values of the damping constant *b*.