Chapter 15: Oscillations

Oscillations are motions that repeat themselves.

springs, pendulum, planets, molecular vibrations/rotations

Frequency f : number of oscillations in 1 sec.

unit: 1 hertz ( Hz ) = 1 oscillation per second =1 s’!

Period T : the time for one complete oscillation.
It 1s the mnverse of frequency.

T=11 or 1=1/T
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FIGURE 15-1 (a) A sequence of “snapshots” (taken at equal time intervals) showing the position of a particle as it oscillates back and forth about the origin of an x axis, between the
limits +x,,, and -X,,. The vector arrows are scaled to indicate the speed of the particle. The speed is maximum when the particle is at the origin and zero wheniitisat | 1.
Ifthe time tis chosen to be zero when the particle is at . r,,,, then the particle returns to .., aty — 7, where Tis the period of the motion. The motion is then repeated. (b)
A graph of x as a function of time for the motion of (a).



Simple Harmonic Motion

Simple harmonic motion (SHM) 1s the oscillation 1n which
the displacement x(t) 1s in the form of

x(t) = x,,cos(wt + @)
X, @ and @ are constants
X,,: amplitude or maximum displacement, x_, = A

ot + @ : phase;  @: phase constant or phase angle
What 1s ®? since x(t) = x(t + T) (at same place after 1 period)
so  Xx.cos(mt) =x_cos(0(t+T)) (let ¢ =0)
thus w(t+T) =t = T =2n

w=2n/T=2nf  ®is the angular frequency (unit: rad/s)
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* Displacement of SHM:

. =0
x(t) = x,_cos(wt + @) g O \ I /
Velocity of SHM: R NONE.
v(t) = dx(/dt = -ox,sin(@t+ @) £ | |7
velocity amplitude: v, =X, = L, [N
Acceleration of SHM: B, /\
a(t) = dv(t)/dt = —w’x_cos(wt + @) £ o, / -
a(t) = —w*x(t): a,_, = 02X, “

In SHM, the acceleration is proportional to the displacement but opposite in sign, and the two quantities are
related by the square of the angular frequency.
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since a(t) = —®’x(t), F =ma=-mw’x =-(mw?)x

s

spring force fits this criteria; F = kX

* Therefore, the block-spring system is a linear simple
harmonic oscillator with

k = mm?

k

W=, —
T:2—7T:27r m | l



Potential energy:
U(t) = 2 kx* = 2 kx_? cos? (ot + @)

Kinetic energy:

K(t) = Y2 mv? = Y2 mw?x,_2sin? (ot + @)
since k/m = ®?

K(t) = %2 kx_%sin? (ot + @)

Mechanical energy:
E=U+ K ="%kx_?[cos? (0t + @) + sin?
(ot + )] =% kx_?

Mechanical energy is indeed a constant,
and 1s independent of time .

Energy

va U(t) + K(2)

U(1)




The block has a kinetic energy of 3.0J and
the spring has an elastic potential energy of
2.0J when the block 1s at x = +2.0 m.

—Xp x=0 +x‘m

A) What i1s the kinetic energy when the block /is? x =07
(

E = };é,t) T ){z(x,t) = 5.07="1% mv? + 10.1)
3

2.0 .0 0
B) What 1s the potential energy when the block is at x = 0?

U(x,t) = % kx2 = % kx, 2 cos? (ot + @) = 0

C) What 1s the potential energy when the block is at x = =2.0m?
Ux,t) =U(—x,t’) =2.0]

D) What is the potential energy when the block 1s at x = —x, 5

E=U(t) + 19({ = 15 kx_2[cos? (0t + ¢) + sin? (ot + )] = ¥4 kx 2 = 5.0]
0



An angular sitmple harmonic oscillator

e Torsion (twisting) pendulum
with restoring torque:
T = —K0 (angular form of Hooke’s Law)
compare to F = -kx where

= since k =mw?, o =2n/T
T=2m,|—

Thus, for angular SHM we have:

JFixed end

Suspension wire

Reference line
\/

\ =]
\4)8\ +0,,
) 0

T=2n \F (subsituting, by analogy, I for m, and « for k)
K



Another SHM Device

The simple pendulum

. |
Pivot |
point : L
|
|
|
|
|
|
|
|

restoring torque: T=-L(mg sin0)

m

v
Ce__9 : |

indicates that T acts to reduce 0.

For small 0, sin@ ~ 0 thus: T =-Lmg0
Remembering T = la, we have:
o = -(Lmg/I)6,
hallmark of angular SHM (compare to: a = -wx)
Thus, o = \/ng/l 4
I of “bob” about swinging point = mL?, and ® = Qﬁ/]EF

So, g = (2nt/T)?’L —can be used to measure g!



Alternatively...
The simple pendulum post

restoring torque: t=-Lmg0

m

and T = - k0; (angular form of Hooke’s Law) i

so: K =mgL,

2
T=2ﬂ:\/1=27t/ I zzn/mL zzn\P
K mgL mglL g

This can be used to measure g

g = (21/T)?L (same result)




 Another SHM Device - The physical pendulum
(real pendulum with arbitrary shape)

h: distance from pivot point O to the center of mass.
Restoring torque:

T =—h (mgsinB) ~ (mgh)0 (1f O 1s small)

K = mgh (since T = - k0) o
therefore: /\
0

T= 271:\/I =27 I
K mgh F, sin 0

I: rotational 1nertia with respect

to the rotation axis thru the pivot.




Sample Problem

Which of the following relationships between the force F
on a particle and the particle’s position x implies simple
harmonic oscillation?

1. F=-5x

2. F=-400x?

3. F=10x

4. F=3x2

5. none of the above



Daily Quiz, March 20, 2006

F = ma(t) = mdv(t)/dt = - mw?x_cos(wt + ¢) = —(mw?)x(t)

mm? = 5.0

Which of the following relationships between the force F on a
particle and the particle’s position x implies simple harmonic
oscillation?

2) F=-400x? 3) F=10x
4) F=3x 5) none of the above



Linear SHM Summary

F(t) = -kx Linear SHM

F(t) = -mw?x(t) where x(t) = x_cos (ot +)
So, a(t) = -0?x(t) “Hallmark” of SHM

With that info:

me?=k — o = V(k/m)
And since ®=2xnf, and f=1/T —» T =2n/w
so T = 2mV(m/k) (units of seconds)

The period T is the easiest parameter to observe experimentally



Torsion Pendulum

Fixed end

T =-K60 Angular SHM (ASHM)
COWlpCll/'e tO Suspension wire
F(t) = -kx Linear SHM (LSHM)

Reference line
T = -k0 1s the angular form of Hooke’s law ‘1\ =

Since T =2nV(m/k) (linear)
T=2mV(I/x) (angular —I is analog to mass, and k

1s like k. « 1s a property of the wire,
while k 1s a property of a spring )

We still have o=2=xnf, and f=1/T —» T =2n/o
(to develop other relations....)



Figure 15-8a shows a thin rod whose length L is 12.4 cm and whose mass m is 135 g, suspended at its
midpoint from a long wire. Its period T, of angular SHM is measured to be 2.53 s. An irregularly shaped objec

which we call object X, is then hung from the same wire, as in Fig. 15-8b, and its period T} is found to be 4.7
s. What is the rotational inertia of object X about its suspension axis?

Suspension
wire

(a) (b) Object X

- FIGURE 15-8 Two torsion pendulums, consisting of (a) a wire and a rod and (b) the same wire and an irregularly

shaped object.
KEY IDEA

The rotational inertia of either the rod or object X is related to the measured period by Eq. 15-23.

Calculations: In Table 10-2e, the rotational inertia of a thin rod about a perpendicular axis through its
midpoint is given as %m,{,z. Thus, we have, for the rod in Fig. 15-8a,

12
= 173x10 kg m?.

Now let us write Eq. 15-23 twice, once for the rod and once for object X:

T,= 2:13% and Tp= 2n|f£h£_a .

The constant ;;, which is a property of the wire, is the same for both figures; only the periods and the rotational
inertias differ.

1, = LmLQ:(11—2)(0.135@(0.124@3

Let us square each of these equations, divide the second by the first, and solve the resulting equation for I,.
The result is

2 2
5, = fa%: (1473x10_4k\g-m2)L65)2
Ta (2.533) (Answer)

6.12x 10 *kg-m?.



Simple Pendulum (we can go a bit farther)
T =-K0 Angular SHM

We can analyze the motion more thoroughly using:
T =lo (T = 2n\(I/k) is still “good”)
T =-Lmgo,

(since T=rxF,andsin(0)=0for small 0)

So, I a =-Lmg0, or: a(t) =-(Lmg/I)*0(t)
Which can be compared to i
a = -°x (hallmark of LSHM) NS

So, for ASHM, ® = V(Lmg/I), or ® = V(g/L) since [ = mL?2

We still have o=2xf, and f= 1/T — T =2/, so T =2a\(L/g)



Sample Problem 15-5

In Fig. 15-11a, a meter stick swings about a pivot point at one end, at distance h from the stick’s center of
mass.

0
L L]
h :‘,
e ¢
- . ])7v » - _ * »
(@) (h)

- FIGURE 15-11 (a) A meter stick suspended from one end as a physical pendulum. (b) A simple pendulum whose

length Lg is chosen so that the periods of the two pendulums are equal. Point P on the pendulum of
(a) marks the center of oscillation.

(a) What is the period of oscillation T?

KEY IDEA

The stick is not a simple pendulum because its mass is not concentrated in a bob at the end opposite the pivot
point—so the stick is a physical pendulum.

Calculations: The period for a physical pendulum is given by Eq. 15-29, for which we need the rotational
inertia I of the stick about the pivot point. We can treat the stick as a uniform rod of length L and mass m.

Then Eq. 15-30 tells us that / — %mﬁz, and the distance h in Eq. 15-29 is %L. Substituting these quantities
into Eq. 15-29, we find

(15-32)

-1 (2)(1.00m)
(3) (9.8mf52)

Note the result is independent of the pendulum’s mass m.

=164s. (Answer)



Simple harmonic motion and circular motion

* Circular motion of point P’: Ly
angular velocity: ®
O=wt+ @

P 1s the projection of P’on x-axis: / p iy
x(t)=x ,cos(wt+¢) SHM K/
e P’: uniform circular motion

P: simple harmonic motion

Read section 15-7 in the book
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Figure 15-14a gives an example. It shows a reference particle P’ moving in uniform circular motion with (constant) angular speed
 in a reference circle. The radius x, of the circle is the magnitude of the particle’s position vector. At any time t, the angular
position of the particle is .t -- ¢» where @ is its angular position at ; — ().
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FIGURE 15-14 (a) A reference particle P* moving with uniform circular motion in a reference circle of radius x,,,. Its projection P on the x
axis executes simple harmonic motion. (b) The projection of the velocity ;" of the reference particle is the velocity of
SHM. (c) The projection of the radial acceleration ; of the reference particle is the acceleration of SHM.




Damped simple harmonic motion

 When the motion of an oscillator 1s reduced by an

external force, the oscillator or 1ts motion 1s said to be
damped.

* The amplitude and the mechanical energy of the
damped motion will decrease exponentially with time.
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Damped simple harmonic motion

Proportional to velocity, but

Spring Force E(x, 1) =—kx in the opposite direction
dx
Damping Force F,(x,t)=-bv(t)= —b( - j /

Response Function (Newton’s Second Law)

ZF(xt) ma = m(d j:> —kx — b(fljj

dt’

X
[

- =




Damped simple harmonic motion

Response Function (Newton’s Second Law)

Rearranging: d2 Lpl 2 dx Lkx =0
dt® dt

This differential equation has the solution:

2
—bt/2m k b

X(0) dampea = Xon cos(a) [+ q))where o = \/ -
m 4m

—bt/2
X(t ) damped =€ m'x(t ) undamped X

_|
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Damped simple harmonic motion
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Total Energy for LSHM =U+ K =%k x_?
Energy for DLSHM:

E. ~ ¥ kx_?e®m. for small damping



Forced Oscillation and Resonance

 Free oscillation and forced oscillation

e For a simple pendulum, the natural frequency ®, = 5

1
* Now, apply an external force: F = F_ cos (m, t)

®©,, driving frequency

X, depend on ®, and ®,,

when ®,; = ©,, X, 1S about the largest this 1s called
resonance.

examples : push a child on a swing, air craft design,
earthquake
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FIGURE 15-17 The displacement amplitude x,, of a forced oscillator varies as the angular frequency w, of the driving
force is varied. The curves here correspond to three values of the damping constant b.



