Chapter 19: The Kinetic Theory of Gases

The Avogadro constant (a.k.a. as Avogadro’s number) 1s named after the early
nineteenth century Italian scientist Amedeo Avogadro, who, in 1811, first
proposed that the volume of a gas (at a given pressure and temperature) is
proportional to the number of atoms or molecules regardless of the nature of the
gas.

The French physicist Jean Perrin in 1909 proposed naming the constant in honor
of Avogadro.[5] Perrin won the 1926 Nobel Prize in Physics, in a large part for
his work in determining the Avogadro constant by several different methods.

The value of the Avogadro constant was first indicated by Johann Josef
Loschmidt who, in 1865, estimated the average diameter of the molecules 1n air
by a method that is equivalent to calculating the number of particles in a given

o, Volume of gas. From Wikipedia

Avogadro’s number

N, = 6.02 x 10?3 *species / mol

* atoms, molecules, sheep, red balloons...



Chapter 19: The Kinetic Theory of Gases

Avogadro’s number

N, = 6.02 x 10%} particles/mol

Number of moles in a sample°
n=N_ /N, /M

samp samp

(number of items you divided by the number of items in a mole, or mass of a
sample divided by the atomic olecular weight)

Universal Gas Constant
R =28.31 J/mol -K

nR =N_ kg

samp
Boltzmann constant

ky=R/N, =1.38x 102 J/K




Ideal Gases

At low gas densities, all gases can be treated as 1deal

gases. Ideal gases obey the relation:

pV =nRT (ideal gas law)

p; Vi _ p;V;
T T:

1

=nR

IF n 1s constant, then

p: absolute (not gauge) pressure.

V: volume of the gas

n: number of moles of gas present.

Ideal gas molecules are non-
interacting idealized points in
space. (unlike these)
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T: the temperature in Kelvin. It *MUST* be 1n Kelvin!

R: gas constant (same for all gases) R =8.31 J/mol - K



Ideal Gases
|pV = nRT |

Three variables 1n the 1deal gas law (4 1f you count n -- but
let n be constant for now).

Some special cases

Pressure:

[sobaric -- constant pressure

Yolume:

[sochoric (or 1sovolumic) -- constant volume

Temperature:

[sothermal -- constant temperature



Ideal Gases

1 <T;
pV =nRT |
For a fixed n, we have three W
variables in the 1deal gas law 7
. . O
Consider special cases A ;

Pressure:

Isobaric -- constant pressure
Volume

\A Vi
W=[ pdv=p| dV=p(V,-V)=pAV

Vand T must be varying



Ideal Gases

|pV = nRT |

Three variables 1n the 1deal gas
law (with n being constant).

Pressure

Consider special cases

Volume:

Isochoric -- constant volume
Volume

W = JVf pdV :J’Vip dV =0 since the integral limts are
Yi Vi equal

P and T must be varying



Ideal Gases T, =T,

|pV = nRT |

Three variables 1n the 1deal gas
law (with n being constant).

Pressure

Consider special cases f
Temperature:
Isothermal -- constant temperature
Volume
Gas expands from V;to V;, p=nRT/V
P and V must
r NRT ]
W = J‘ pdV _J’ n dv be varying
e =nRT[In V]’ =nRT In—t

Vi V i \Y

1



Summary of Work W = deV

Work done at constant pressure

p i1s constant, W=p (V;—V)=p AV

Work done at constant volume

dV=0, so W=0

Work done by 1deal gas at constant temperature

W = j pdV = j @d\/ =nRT dvv—nRT[an]vf =nRTln%

1



Sample Problem

/ Can one mole of an 1deal gas at a
temperature of 300K occupy a fixed
volume of 107> m? (ten liters) at one

atmosphere (1.01x10°N/m?) of pressure?
./ Remember: R = 8.31 J/mol - K

1) yes.
2) No. The gas needs to be heated up to occupy that volume

with that pressure.

3) No. The gas needs to be cooled down to occupy that volume
with that pressure.

4) Depends on the type of ideal gas molecules.



Sample Problem

/ pV =nRT

pV = (1.01x10°N/m?)(107*m?)
= 1010 N-m =1,01017J

/ nRT = (1.0mol)(8.31 J/mol - K)(300K)
= 2,493 ]

Can one mole of an 1deal gas at a temperature of 300K occupy a

fixed volume of 107?m?3 (ten liters) at one atmosphere (1.01x10°N/

m?) of pressure? Remember: R =8.31 J/mol -K

1) yes.
2) No. The gas needs to be heated up to occupy that volume

he gas needs to be cooled down to occupy that volume

Al pressure. T=pV/nR
4) Depends on the type of ideal gas mq = 1010J/(1.0)(8.31)=122K




Kinetic Theory of Gasses,
19-4:Pressure, Temperature and RMS Speed

What causes pressure?

All macroscopic (1.e., human scale)
quantities must ultimately be explained on
the microscopic scale.



Pressure

Consider n mols of 1deal gas confined
in cube of volume V (edge L) at a
constant T...What 1s the connection
between the pressure on the walls and
the speed(s) of the molecules

Force
Area

Pressure =

m

\:¢

L

, but what 1s this force?

— Normal to

/ shaded wall

— X

Relate force to impulse and associated change in

momentum with collisions.

df) Here we are talking about

F = E = ‘@J/ momentum (a vector)...!

Apx :pf _pi — (_mvx )_ (mvx): —szX

(This is the momentum delivered to the wall by the particle)



Take At to be the time between collisions (with the
wall, in the +/- x direction). It will have traveled 2L

in that time with speed v,.
Holds for x component, regardless

F Ap 2mV sz of collisions with other walls
— X _ X )

X
X

At 2L/v, L

~Normal to
shaded wall

L
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For many identical particles, allowing for different v ...
The pressure on wall of area L? will be:

F. mv: /L+mv,,/L+...+mv, /L

L L’

:(m)(vil_l_ViZ_l_'”_l_ViN Where N is the # of

p:

L particles in the box



Since there are N molecules in the box, N =nN,
and N 1s usually a *very* big number, we can use
the average speed instead of the actual speeds.

F mv,/L+mv,/L+...+mv. /L

I L’

_(m j(v2 +V, .V

- 3 x1 X2 cee xN
\ L . / ~Normal to
( = shaded wall

. m ( 0 2 m —

=| 73 \ ve 5

The volume of the box is L?, so

N
p=m$A@Q@



VI'IIIS

Since there are 3 dimensions, v,* + v,* + v, 2= v* and
each dimension is equivalent, v,> = v, 2 = v > =>v? = 3v 2

N N, (1 N
p= mr\l, A (V2 )avg = mr\lf A (gvz lvg = m3nv A (v lvg

(V2)an 1s the average of the squared speed -- which
makes the speed the (square) root of the mean (average)
squared speed -- 1.e., root-mean-squared speed, v,__..

N 3
3V nmN ,



gas temperature

mN , 1s the mass of a mol of gas particles, 1.e. the molar
mass M of the gas...using the 1deal gas law pV =nRT :

b = 3pV _ 3nRT _ /3RT _ /3kBT Since ky N, = R
rms nmNA I’ZM M m andMZmNA

Remember: M and m have units of kgs

Thus, the characteristic speed of the gas molecules 1s related to
the temperature of the gas!
Here are some speeds at 300 K:

Gas Vs (I1/S)
Hydrogen 1920
Helium 1370

N, 517

escape speedg,., 1120



Kinetic Energies

Average kinetic energy:

Koo =3m(v?), =3mvy,
— (L1 Mi: 1 SRT — 3RT: é i — 3
=)= " o, (2)[NJT a

Kinetic energy only depends on the gas’s temperature!

1 2 _3
K —EmVrmS—EkT

avg

The “3” comes from the three dimensions: X, y, and z!



Mean Free path

Now consider that the molecules have some size...
the mean-free-path A between collisions with other
molecules 1s:

o A 1s proportional o e
to V, inversely \ 40 L
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A simple (but somewhat inaccurate) calculation of A

As our single molecule zigzags through the gas, it sweeps out a short cylinder of cross-sectional area 72 between successive collisions. If we watch this

molecule for a time interval Az, it moves a distance y, Az, where v is its assumed speed. Thus, if we align all the short cylinders swept out in interval Az, we

form a composite cylinder (Fig. 19-7) of length y, A and volume (,sz)(v Az). The number of collisions that occur in time Az is then equal to the number of
(point) molecules that lie within this cylinder.

- FIGURE 19-7 Intime 47 the moving molecule effectively sweeps out a cylinder of length + 7 and radius d.

Since N/V is the number of molecules per unit volume, the number of molecules in the cylinder is N/V times the volume of the cylinder, or (N/V)(-4 szz).
This is also the number of collisions in time A¢. The mean free path is the length of the path (and of the cylinder) divided by this number:

\ = length of path dunngAz v Af
7 number of collisions inAf 32 0 M/ 7
: (19-26)
— —1 .
dENIV

Real world values for A:

The mean free path of air molecules at sea level is about (). 1 yim. At an altitude of 100 km, the density of air has dropped
to such an extent that the mean free path rises to about 16 cm. At 300 km, the mean free path is about 20 km. A
problem faced by those who would study the physics and chemistry of the upper atmosphere in the laboratory is the

unavailability of containers large enough to hold gas samples that simulate upper atmospheric conditions. Yet studies of
the concentrations of Freon, carbon dioxide, and ozone in the upper atmosphere are of vital public concern.



We know V__,

but there is a distribution of speeds
But.... not all the molecules are going at that speed.
Some are going faster and some sloooower than v__ .

. . ~1
A gas molecule interacting 9 el e
. . . -~ - /
with neighboring molecules am Sh e
is like you trying to get to the /\//
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Maxwell-Boltzmann Distribution

Define a probability distribution function P(v)....
...with area (integral) equal to 1.
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P(v) 1s the Maxwell-Boltzmann Probability function
P(v) dv 1s dimensionless (just a number in range 0 to 1)

P(v)=4x



Maxwell-Boltzmann Distribution
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Distribution of speeds 1s broader and faster at higher T

What is the average speed? Ve = Jv P(v)dv
0



Maxwell-Boltzmann Distribution
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Molar specific heat of an ideal gas

Molar specific heat:

Q=cn(T;-T))

Pressure

The specific heat c is a value that depends
on the ability of a substance to absorb
energy. As such, ¢ depends on both the
type of material and whether the process is a

constant volume process or a constant
pressure process. Volume

1) Constant-volume process
2) Constant-pressure process

3) Arbitrary process



Molar specific heat of an ideal gas

Molar specific heat at constant volume: C,

Q =n Cy, AT (constant V process) since V = constant, so
W=0,50AE, ., =Q-W=nCy AT or E_ =nC,AT

For 1deal gas, the change 1n
internal energy depends only
on the change 1n gas
temperature.

Pressure

Volume



Molar specific heat at constant pressure: C/

Q=nCAT (constant Pressure process)
AE;,, = Q—-W,
since p = constant, W = pAV = nRAT
AE;=n CAT —nRAT =n(C, - R)AT
But AE. . 1s the same for all processes

AE.

.. constant volume = n C,, AT

Theretore, nCy,AT =n(C, - R)AT Cy=C,—-R




Stopcock

LE\SL = B\ =t
SIS
BN

Adiabatic expansion of an ideal gas.

>
Vacuum 5y

For an adiabatic process, Q = 0.

pVY= a constant

Y =C /C, treatY as a constant that Rapid processes,
p or even slow ones

depends on the type of the gas molecules.  if e sysiem is well
insulated

Free expansions (when mass is removed)

Q=W=0,

So AE, . =0,
Therefore T. = T,
or P.V.=P:V;

o~ Adiabat (Q=0)

Pressure

Isotherms:
700 K
500 K
300 K

\ .
>~ Insulation

Volume
(h)




Derivation of pVY = constant

Suppose that you remove some shot from the piston of Fig. 19-15a, allowing the ideal gas to push the piston and the
remaining shot upward and thus to increase the volume by a differential amount dV. Since the volume change is tiny, we
may assume that the pressure p of the gas on the piston is constant during the change. This assumption allows us to say

that the work dW done by the gas during the volume increase is equal to p dV. From Eq. 18-27, the first law of

thermodynamics can then be written as

dBp=0—p av.

(19-57)

Since the gas is thermally insulated (and thus the expansion is adiabatic), we substitute 0 for Q. Then we use Eq. 19-45 to

substitute nCy, dT for dE; .. With these substitutions, and after some rearranging, we have

_ (2
ndT = (CV)dV.

Now from the ideal gas law (pl” = »RT) we have
pdV 4 Vdp=nRdT .

Replacing R with its equal, C'p — CV' in Eq. 19-59 vyields

pdlV 4+ Vdp
Cp—=Cyp

Equating Egs. 19-58 and 19-60 and rearranging then give
dp | (Cp )dV 0

ndT =

2 Cyp |V
Replacing the ratio of the molar specific heats with ~ and integrating (see integral 5 in Appendix E} yield
Inp + ~Inl = aconstant .
Rewriting the left side as lan_: and then taking the antilog of both sides, we find

pV = aconstant .

(19-58)

(19-59)

(19-60)

(19-61)



Isobaric --- constant pressure process
anCpAT, W=p AV
Isothermal --- constant temperature process

AE. =0, Q=W=nRTIn(V/V,)

Int

Isochoric process --- constant volume process

Q=AE_=nCyAT, W=0

Adiabatic expansion of an ideal gas

Q=0, pV!=a constant AE;,=Q-W

for all processes.

Free expansion

Q=W=0=> AE,, =0, =>T,=T; =>p,V,=psV;



(¢) CHy

FIGURE 19-13 Models of molecules as used in kinetic theory: (a) helium, a typical monatomic molecule; (b) oxygen, a typical diatomic
molecule; and (¢) methane, a typical polyatomic molecule. The spheres represent atoms, and the lines between them
represent bonds. Two rotation axes are shown for the oxygen molecule.

To keep account of the various ways in which energy can be stored in a gas, James Clerk Maxwell introduced the theorem of the
equipartition of energy:

‘- Every kind of molecule has a certain number f of degrees of freedom, which are independent ways in which the molecule
can store energy. Each such degree of freedom has associated with it—on average—an energy of %k? per molecule (or

%RT per mole).



Degrees of Freedom

Particles can absorb energy depending on their structure.
A degree of freedom 1s a way that a particle can move.

All particles can move 1n x-, y-, and z-directions.

> 3 degrees of freedom

diatomic molecules (N,, O,, etc.) have two rotatational
energies.

. ‘ > 2 more degrees of freedom

polyatomic molecules (CH,, S10, etc.) have three rotational
energies.

> 3 more degrees of freedom




Degrees of Freedom

Particles can absorb energy depending on their structure.
A degree of freedom 1s the way the particle can move.

Molecule Translational Rotational Total C,
monotomic 3 0 3 3/2

diatomic 3 2 5 5/2
polyatomic 3 6 6/2 =3

Each degree of freedom contributes 1/2R to the Cs,.

monotomic AE., = 5 nRAT W T,
5 i.? Rotation
diatomic AE = EnRAT A i T T T 3/2
Translation
pOlyatomic AElnt — 3nRAT 0 | | 1 | | | ] |

20 50 100 200 500 1000 2000 5000 10,000
Temperature (K)



Degrees of Freedom

Particles can absorb energy depending on their structure.
A degree of freedom 1s the way the particle can move.

4

A 7/

. . 5 3 Oscillation
diatomic AE;, = EHRAT w1 T S,
— 2 Rotation

———————— 0 Tmr———17—-17111570 3/

|
Translation
() | | 1 | | | | |
20 50 100 200 500 1000 2000 5000 10,000

Temperature (K)

New degrees of freedom are accessed as temperature 1s increased



Sample Problem 19-8 Build your skill ~ \

We transfer 1000 J to a diatomic gas, allowing it to expand with the pressure held constant. The gas molecules
rotate but do not oscillate. How much of the 1000 J goes into the increase of the gas’s internal energy? Of that
amount, how much goes into A sran (the kinetic energy of the translational motion of the molecules) and AK sot

(the kinetic energy of their rotational motion)?

KEY IDEAS

The transfer of energy as heat Q to a gas under constant pressure is related to the resulting temperature increase A7 via Eq. 19-46 (

1 0 =nC, AT

2 Because the gas is diatomic with molecules undergoing rotation but not oscillation, the molar specific heat is, from Fig. 19-12 and Table 19-3,

. o 7 )

Cp=3R

3 The increase AFint in the internal energy is the same as would occur with a constant-volume process resulting in the same A7. Thus, from
Eq. 19-45, AR, , — »nC' yAT- From Fig. 19-12 and Table 19-3, we see that (¢, — %R-

For the same n and AT, A, , is greater for a diatomic gas than a monatomic gas because additional energy is required for rotation.

Increase in Ejyy: Let’s first get the temperature change A7 due to the transfer of energy as heat. From Eq. 19-46, substituting %R for Cp, we

have
Q
AT = 7 . (19-52)
=nR
2
We next find Az, , from Eq. 19-45, substituting the molar specific heat CV( - %R) for a constant-volume process and using the same AT.
Because we are dealing with a diatomic gas, let’s call this change AEint, dia® Equation 19-45 gives us
ABga = nCyAT=n2R|-E-|=30
2 qu 2 (Answer)

= 0714280="714.37.
In words, about 71% of the energy transferred to the gas goes into the internal energy. The rest goes into the work required to increase the volume

AFtha Ane



Increases in K: If we were to increase the temperature of a monatomic gas (with the same value of n) by the amount given in Eq. 19-52, the

internal energy would change by a smaller amount, call it AEM, — because rotational motion is not involved. To calculate that smaller amount,

we still use Eq. 19-45 but now we substitute the value of Cy, for a monatomic gas—namely, CV= %R- So,

Substituting for A7 from Eq. 19-52 leads us to

3 Q 3
ABint mon = ny T =§Q
2

= 0428570 =428.67T.

For the monatomic gas, all this energy would go into the kinetic energy of the translational motion of the atoms. The important point here is that for
a diatomic gas with the same values of n and A7, the same amount of energy goes into the kinetic energy of the translational motion of the

molecules. The rest of AEint, din (that is, the additional 285.7 ]} goes into the rotational motion of the molecules. Thus, for the diatomic gas,

A jpans = 428.6] and AKX, = 28577 (Answer)




