
Chapter 19:   The Kinetic Theory of Gases 

Avogadro’s number 

 NA = 6.02 x 1023 *species / mol 

The Avogadro constant (a.k.a. as Avogadro’s number) is named after the early 
nineteenth century Italian scientist Amedeo Avogadro, who, in 1811, first 
proposed that the volume of a gas (at a given pressure and temperature) is 
proportional to the number of atoms or molecules regardless of the nature of the 
gas.  

The French physicist Jean Perrin in 1909 proposed naming the constant in honor 
of Avogadro.[5] Perrin won the 1926 Nobel Prize in Physics, in a large part for 
his work in determining the Avogadro constant by several different methods. 

The value of the Avogadro constant was first indicated by Johann Josef 
Loschmidt who, in 1865, estimated the average diameter of the molecules in air 
by a method that is equivalent to calculating the number of particles in a given 
volume of gas. From Wikipedia 

* atoms, molecules, sheep, red balloons… 



Chapter 19:   The Kinetic Theory of Gases 

Avogadro’s number 

 NA = 6.02 x 1023 particles/mol 

Number of moles in a sample: 
 n = Nsamp/NA = msamp/M  

Universal Gas Constant 
 R = 8.31 J/mol . K 

Boltzmann constant 

 kB = R/NA = 1.38 x 10-23 J/K 

(number of items you have divided by the number of items in a mole, or mass of a 
sample divided by the atomic or molecular weight) 

nR = NsampkB 



Ideal Gases 
At low gas densities, all gases can be treated as ideal 
gases. Ideal gases obey the relation: 

p:  absolute (not gauge) pressure.  

V:  volume of the gas 

n:  number of moles of gas present.  

T:  the temperature in Kelvin.  It *MUST* be in Kelvin! 

R:  gas constant (same for all gases)  R = 8.31 J/mol . K 

IF n is constant, then 

pV = nRT     (ideal gas law) 
Ideal gas molecules are non-
interacting idealized points in 
space. (unlike these) 



Ideal Gases 
pV = nRT 

Three variables in the ideal gas law (4 if you count n -- but 
let n be constant for now).   

Pressure: 

Volume: 

Temperature: 

Some special cases 

Isobaric -- constant pressure 

Isochoric (or isovolumic) -- constant volume 

Isothermal -- constant temperature 



Ideal Gases 
pV = nRT 

For a fixed n, we have three 
variables in the ideal gas law 

Pressure: 

Consider special cases 

Isobaric -- constant pressure Volume 
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Ti < Tf 

V and T must be varying 
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Ideal Gases 
pV = nRT 

Three variables in the ideal gas 
law (with n being constant).   

Volume: 

Consider special cases 

Isochoric -- constant volume 
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since the integral limts are 
equal 

Ti < Tf 

P and T must be varying 
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Ideal Gases 
pV = nRT 

Three variables in the ideal gas 
law (with n being constant).   

Temperature: 

Consider special cases 

Isothermal -- constant temperature 
Gas expands from Vi to Vf ,  p = nRT/V 
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Ti = Tf 

P and V must 
be varying 



Work done by ideal gas at constant temperature 

Work done at constant volume  

 dV = 0,   so  W = 0  

Work done at constant pressure 

 p is constant,   W = p (Vf – Vi) = p ΔV 

Summary of Work 



Sample Problem 
Can one mole of an ideal gas at a 
temperature of 300K occupy a fixed 
volume of 10-2  m3 (ten liters) at one 
atmosphere (1.01x105N/m2) of pressure?  
Remember: R = 8.31 J/mol . K 

1)  yes. 
2)  No.  The gas needs to be heated up to occupy that volume 
with that pressure. 
3)  No.  The gas needs to be cooled down to occupy that volume 
with that pressure. 
4)  Depends on the type of ideal gas molecules. 



Sample Problem 

1)  yes. 
2)  No.  The gas needs to be heated up to occupy that volume 
with that pressure. 
3)  No.  The gas needs to be cooled down to occupy that volume 
with that pressure. 
4)  Depends on the type of ideal gas molecules. 

pV = nRT 
pV = (1.01x105N/m2)(10-2m3) 
      =  1010 N-m = 1,010 J 

nRT = (1.0mol)(8.31 J/mol . K)(300K) 
      =  2,493 J 

T= pV/ nR 
   = 1010J/(1.0)(8.31) = 122 K 

Can one mole of an ideal gas at a temperature of 300K occupy a 
fixed volume of 10-2m3 (ten liters) at one atmosphere (1.01x105N/
m2) of pressure?  Remember: R = 8.31 J/mol . K 



Kinetic Theory of Gasses,   
19-4:Pressure, Temperature and RMS Speed 

All macroscopic (i.e., human scale) 
quantities must ultimately be explained on 
the microscopic scale. 

What causes pressure? 



Pressure 

Pressure =  Force 
Area 

Relate force to impulse and associated change in 
momentum with collisions. 

Here we are talking about 
momentum (a vector)…!  

, but what is this force? 

Consider n mols of ideal gas confined 
in cube of volume V (edge L) at a 
constant T…What is the connection 
between the pressure on the walls and 
the speed(s) of the molecules 

(This is the momentum delivered to the wall by the particle) 



Take Δt to be the time between collisions (with the 
wall, in the +/- x direction).  It will have traveled 2L 
in that time with speed vx. 

The pressure on wall of area L2 will be: 

For one particle 

Fx = 

Holds for x  component, regardless 
of collisions with other walls 

For many identical particles, allowing for different vx … 

Where N is the # of 
particles in the box 



Since there are N molecules in the box,  N = nNA 
and N is usually a *very* big number, we can use 
the average speed instead of the actual speeds. 

The volume of the box is L3, so 



vrms 

(v2)avg is the average of the squared speed -- which 
makes the speed the (square) root of the mean (average) 
squared speed -- i.e., root-mean-squared speed, vrms. 

Rearrange 

(v2)avg  =  vrms 

Since there are 3 dimensions, vx
2 + vy

2 + vz
2 = v2 and 

each dimension is equivalent, vx
2 = vy

2 = vz
2 => v2 = 3vx

2 



gas temperature 

mNA is the mass of a mol of gas particles, i.e. the molar 
mass M of the gas…using the ideal gas law pV = nRT :  

vrms =
3pV
nmNA

=
3nRT
nM

=
3RT
M

=
3kBT
m

Thus, the characteristic speed of the gas molecules is related to 
the temperature of the gas! 
Here are some speeds at 300 K: 

Gas    vrms (m/s) 
Hydrogen   1920 
Helium   1370 
N2    517 
escape speedEarth  1120 

Since kB NA = R 
and M = mNA 

Remember: M and m have units of kgs 



Kinetic Energies 

Average kinetic energy: 

Kavg = 1
2 m v2( )avg = 1

2 mvrms
2

= 1
2 m( ) 3RT

M
= 1

2( ) 3RT
M / m

=
3RT
2NA

=
3
2
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2 kT

Kinetic energy only depends on the gas’s temperature! 

The “3” comes from the three dimensions:  x, y, and z! 



Mean Free path 
Now consider that the molecules have some size… 
the mean-free-path λ between collisions with other 
molecules is: 

Molecular sizes 

λ is proportional 
to V, inversely 
proportional to 
N and d2 



A simple (but somewhat inaccurate) calculation of λ 

Real world values for λ:  



We know Vrms,  
but there is a distribution of speeds 

But.... not all the molecules are going at that speed.  
Some are going faster and some sloooower than vrms. 

A gas molecule interacting 
with neighboring molecules 
is like you trying to get to the 
concession stand during a 
rock concert! 



Maxwell-Boltzmann Distribution 
Define a probability distribution function P(v)…. 

   …with area (integral) equal to 1. 

P(v) is the Maxwell-Boltzmann Probability function 
P(v) dv is dimensionless (just a number in range 0 to 1) 



Maxwell-Boltzmann Distribution 

vavg = vP(v)dv
0

∞

∫What is the average speed? 

Distribution of speeds is broader and faster at higher T 



Maxwell-Boltzmann Distribution 

Thus,  

(v2 )avg = v2 P(v)dv
0

∞

∫ =
3RT
M

Recognizing the Integral is of the form 

and Ditto… 

vrms = (v2 )avg =
3RT
M

and 



Molar specific heat of an ideal gas 
Molar specific heat: 

Q = c n ( Tf – Ti ) 

1) Constant-volume process 

2) Constant-pressure process 

3) Arbitrary process 

The specific heat c is a value that depends 
on the ability of a substance to absorb 
energy.  As such, c depends on both the 
type of material and whether the process is a 
constant volume process or a constant 
pressure process. 



Molar specific heat of an ideal gas 

Molar specific heat at constant volume: CV  

Q = n CV ΔT (constant V process) since V = constant, so 
W = 0, so ΔEint = Q – W = n CV ΔT    or   Eint = n CV ΔT 

For ideal gas, the change in 
internal energy depends only 
on the change in gas 
temperature. 



Molar specific heat at constant pressure: Cp 

Q = n CpΔT      (constant Pressure  process) 

 ΔEint = Q – W,    

 since p = constant, W = pΔV = nRΔT 

ΔEint = n CpΔT – nRΔT = n(Cp – R)Δ T 

But ΔEint is the same for all processes 

ΔEint constant volume = n CV ΔT   

Therefore, nCVΔT = n(Cp – R)Δ T  CV = Cp – R 



Adiabatic expansion of an ideal gas.  

For an adiabatic process, Q = 0.  

pVϒ = a constant 

ϒ = Cp/CV    treat ϒ as a constant that 
depends on the type of the gas molecules. 

Free expansions (when mass is removed) 

  Q = W = 0, 

 So ΔEint = 0,  

 Therefore Ti = Tf    

 or   PiVi = PfVf 

Rapid processes,  
or even slow ones 
if the system is well 
insulated 



Derivation of pVϒ = constant 



Isobaric --- constant pressure process 

  Q = n CpΔT,      W = p ΔV 
Isothermal --- constant temperature process 

  ΔEint = 0,       Q = W = nRT ln(Vf/Vi) 

Isochoric process --- constant volume process 

 Q = ΔEint = n CV ΔT,       W = 0 

ΔEint = Q - W  

for all processes. 

Adiabatic expansion of an ideal gas  

 Q = 0,   pVϒ= a constant   
Free expansion 

 Q = W = 0  =>  ΔEint = 0,  => Ti = Tf   => piVi = pfVf 





Degrees of Freedom 
Particles can absorb energy depending on their structure.  
A degree of freedom is a way that a particle can move. 

All particles can move in x-, y-, and z-directions. 

diatomic molecules (N2, O2, etc.) have two rotatational 
energies. 

3 degrees of freedom 

2 more degrees of freedom 

polyatomic molecules (CH4, SiO2 etc.) have three rotational 
energies. 

3 more degrees of freedom 



Degrees of Freedom 
Particles can absorb energy depending on their structure.  
A degree of freedom is the way the particle can move. 

Each degree of freedom contributes 1/2R to the CV. 

Molecule  Translational    Rotational    Total 
monotomic   3   0   3 
diatomic   3   2   5 
polyatomic   3   3   6 

monotomic 

diatomic 

polyatomic 

CV 
3/2 
5/2 
6/2 = 3 



Degrees of Freedom 
Particles can absorb energy depending on their structure.  
A degree of freedom is the way the particle can move. 

diatomic 

New degrees of freedom are accessed as temperature is increased 






