As another example, we have previously developed geo-
desic clock reference systems that are equivalent to the well
known mfalhng and rising Eddington—Finkelstein coordinate
systems.* These reference systems consist of a succession of
clocks measuring time 7* that drop from, or rise to, some
constant radius R,>R,. Each clock is syrichronized such
that the time recorded by it as it drops from, or rises to, R,
equals the time on a clock that remains fixed at R, . Thus we
have a picture of a sort of clock factory fixed at RC , that at
regular intervals drops clocks that are synchronized with a
master clock in the clock factory.

The transformation that replaces the Schwarzschild time
coordinate T with the geodesic clock time coordinate 7* has
the same form as Eq. (2.4), except the variable quantity R, is
replaced with the constant quantity R, . The resulting nondi-
agonal metric has the form

dzé —— dR \/Rs Rd
SRT)=TRJR,) "R RAT

—d7m*+R? dQ?%, m==*1, (B1)

where m =—1(+1) for clocks that fall from (rise to) R, . This
metric form looks like the metric form (2.1), except here R
is a constant and not a variable.

Figures 5(a) and 5(b) show (R,7*) spacetime diagrams
where time is, respectively, measured with infalling clocks
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(m=—1) and rising clocks (m=+1). It is seen that all the
world lines of all the previous figures are repeated in a one-
to-one fashion, including the limiting timelike geodesic dd
and the timelike trajectories in the shaded regions that cannot
be followed to R>R_. The familiar “tilting” of light cones
in Eddington—Finkelstein coordinates is also seen in the co-
ordinates (R,7*).

The 7*-reference system could be straightened out by in-
troducing a new comoving spatial coordinate that stays con-
stant along the world line of each geodesic clock. This would
result in the nondiagonal metric form (B1) being changed
into a diagonal form. But there is nothing to be gained from
this.

1A discussion and comparison of the coordinate system of Eddington—
Finkelstein, Ktuskal-Szekeres, and' Novikov, including references to the
original and related papers, can be found in C. W. Misner, K. S. Thome,
and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), Secs. 31.4
and 31.5. ‘

2R. Gautreau, “On Kruskal-Novikov coordinate systems,” Nuovo Cimento
B 56, 49-71 (1980).

3R. Gautreau, “General relativity in Newtonian form,” Gen. Rel. Grav. 22,
671-681 (1990).

“R. Gautreau and B. Hoffmann, “The Schwarzschild radial coordinate as a
measure of proper distance,” Phys. Rev. D 17, 2552-2555 (1978). See
also C. Ftaclas and J. M. Cohen, “Generalized radial observers and the
Reissner-Nordstrom field,” Phys. Rev. D 21, 2103-2106 (1980).
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The exponential decay law is a consequence of the choice of the “Breit—Wigner”

;

energy

distribution when the integration over the energy is extended from — to +o. We explain why the
Breit—Wigner function is the natural choice ahd study by the method of steepest descent and by
direct integration how an integration over the physically relevant positive energy spectrum affects
the decay law. © 1995 American Association of Phys:cs Teachers.

1. INTRODUCTION

Almost all known elementary particles are unstable and
decay according to the exponential decay law.!

The empirical support for the decay law, which even at
high school level can easily be demonstrated with the help of
a Geiger counter, is so convincing that one often tends to
neglect the fact that the decay law in a quantum mechanical
treatment is not exactly exponential and that the approach to
the exponential is a result of delicate approximations.”

The quantum mechanical treatment of a decaymg system
was established by Wigner and Welsskopf One chooses an
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element ¢ of the Hilbert space, usually identified as the
eigenfunction of some unperturbed Hamiltonian H, as the
initial state of the system. The full Hamiltonian, H=H,+V,
where V is a perturbation under which the original system is
unstable, generates an evolution of ¢, which is understood as
the “decay” of this unstable state, i.e.,

¢t=e_th¢'
Here, e_"'H‘ is the one-parameter group (which satisfies
e iHilg=iHI2 — o~iH(1¥1) of: the Schrodinger motion;

clearly ¢, satisfies (we take fi=1)
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The decay law is based on the assumption that the square of
the survival amplitude*

A()=(gle" ™| ¢),

is the probability P(t) that the system has not decayed

Wigner and Welsskopf showed: that this probability is ap-
proximately exponential in form for ¢ not too large and not
too small. It is clear that, for very small ¢, the decay law
cannot be exponential, since for Hermitian H (and when
H| @) is defined) (see also Ref. 8)

d 2 —
- [ATP,=0=0.

The time before passing to an approximate exponential be-
havior is generally (for small coupling) very small compared
to the lifetime.*

An exact exponential form in the quantum theory is ob-
tained by taking the Fourier transform of the Breit—Wigner
energy density distribution (given below) from —o to +oo,
The fact that the actual energy spectrum is bounded from
below leads (via use of the Paley—Wiener theorem) to a de-
viation from the exponential for large times.* It has recently
been shown,” in fact, that for an unstable quantum system for
which the unperturbed Hamiltonian has discrete states em-
bedded in a continuous spectrum on (—,), the time depen-
dence of the decay is a sum of exponential contributions plus
a background contribution which may be arbitrarily small for
any positive ¢.

For small times it is the expectation value of (H—(H))*
in the initial state |¢) which leads to a measure of the devia-
tion from the pure exponent1a1 67 (Note that the boundness of
the Hamiltonian on |¢) also is crucial for the short time de-
viation.)

In many situations it is difficult to estimate the contribu-
tion of the integration from — to zero and in this way
evaluate the error when one neglects the semiboundness and
instead integrates over an energy spectrum covering all the
real axis. We show, however, by the use of the method of the
steepest descent, that one can demonstrate in a simple and
elegant way that the exponential decay law is a good ap-
proximation for the decay law in many interesting cases. The
use of the method of the steepest descent, which carries
pedagogical value as well, has to our knowledge, never been
exploited in this framework.

The energy distribution function w(E) is defined as the
Fourier transform of the nondecay amplitude A(z), i.e.,

A(t)= fowe_iE’w(E)dE. 1)

We see that w(E) is the density, or a priori amphtude with
which the component e ~Et occurs. Hence, w(E) is called
the energy density distribution.

The nondecay probability, P(t), is then determined, pro-
vided the energy density distribution, w(E) is specified.®
The integral distribution function W(E) is related to w(E)
by

‘ E
W(E’)—W(E)=j w(E)dE,
EV
where E and E' are any two values of energy. Krylov and
Fock® concluded that a system decays if and only if the in-
tegral energy distribution function is continuous.
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An exponential decay law has been derived by Khalfin, as
an approximation to the actual time development, by using
the Breit—Wigner (BW) energy density distribution, and by
extending the integral in Eq. (1) from — to o, Thus

A ~fm —iEt F
(t)N “we ’IT[(E—E())Z"" 1'*2] dE. (2)

When studying exponential decay, the energy density dis-
tribution is often chosen to be the BW function,

w(E)=

m[(E—Ey)*+T?]

It is chosen to reflect the exponential decay law upon inte-
gration from — to o with e £/, as we discuss in the next
section. One could, however, ask 1f the energy density distri-
bution is uniquely determined by the decay law,

P(t)=e" 2",

We shall show that this is not the case, but that given this
decay law, the BW function must appear in-the energy den-
sity distribution, and that is why it has so often been typi-
cally chosen.

We then examine another observed decay law, that given
by the product of an exponential and a polynomial. A simple
case for which such decay laws can occur has been investi-
gated by Stodolsky.!

We find the energy distribution density which, when al-
lowing the energy to be integrated from —o to =, gives rise
to this more general type of decay. When, however, the en-
ergy is semi bounded, that is, when the energy distribution
density is nonzero only for positive values of E, we derive a
different decay law using direct integration. Using the
“method of steepest descent,” we show that the exponential
term is the leading term, and hence the exponential decay
law is a good approximation for a decay which emerges from
the BW energy density distributiofi. The result of the direct
integration from 0 to = is a decay law, given by an exponen-
tial term and a polynomial with negative powers of ¢.

II. EXPONENTIAL DECAY: WHY THE BW ENERGY
DENSITY DISTRIBUTION?

We will first show how the BW energy density distribution
gives rise to approximate exponential decay.

We calculate the decay law explicitly, carrying out integral
(2). Considering E as a complex variable, the integrand has
poles at E=E*+iI'. The integral can be calculated using
complex contour integration to obtain

A(t)=e ot 7Tt 3

We see that the important term mA(t) which is e ¢, comes

from the residue of e £’ at the pole in the lower half-plane
of E.

We now let w(E) be a general real and positive energy
density distribution. We shall try to reconstruct w(E) based
on the following considerations. In order to have exponential
decay, w(E) must have a pole in the lower half-plane. The
pole should not be too close to the real axis because as I'
approaches 0, e T approaches e ~02=1, i.e., there is no de-
cay. This corresponds to the fact that the lifetime is propor-
tional to 1/T". The presence of a pole at (E,—iI') implies that
(E) contains a factor 1/(E —Ey+iI'). In addition, in order
to have physical interpretation, w(E) must be real for all real
E. The complex conjugate of the first factor,
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1/(E—Ey—iT’), must therefore also be a factor of w(E).
The residue of this factor at the negative pole results in a I
factor in the denominator. In order not to have any inverse I
dependence in the decay law, therefore, we need a I in the
numerator of w(E) in order to cancel the I' in the denomi-
nator. This means that w(E) must be of the form

r
(E—(E—E-(E,+i)] T &

w(E)=

= [E=Eq2+17 [

If f(E) has at least one pole then, since f(E) is real for all
real E, it has at least two poles, one in the upper half-plane
and one in the lower half-plane. We consider the case where
f(E) has a pole different from Ey=*iI". The decay law will
then be given by the sum of the residue of w(E) at the pole
E,—iT and the residue at the pole (or poles) of f(E) which
lie in the lower half-plane. This will result in a decay law
which is the sum of two or more exponentials

P(t)=e-—2rlt+e—-2l‘zt+.“

The long-time behavior of the system will be dominated by
the pole I'; which is closest to the real axis

P(t),_o—e 21!,

If we are interested in pure exponential decay, then this case
is ruled out, and f(E) can have no Boles,

It was shown by Krylov and Fock” that the energy density
distribution w(E) of the decaying state exhibits various
properties. In particular, in the problem of the emission of a
particle from a well through a potential energy barrier (a
decay) the energy density distribution w(E) is a meromor-
phic function of the complex variable E. Since we have said
that f(E) has no poles, if we assume that we are dealing with
only meromorphic functions, then f(E) must be an entire
function. In addition, we suppose that f(E,—iI") has modu-
lus 1. We have thus shown that w(E) is the product of a BW
function and an analytic function f(E) such that f(F) is real
for all real E, and |f(E,—il)|=1. Since there are many
such functions, w(E) is not uniquely determined.

We would not expect w(E) to be unique, since w(E) is
given by the Founer transform of A(t), where the modulus
of A(t) is e” T* but where the phase factor of A(t) is un-
known

w(E)zy‘_l(e_rltl.e'¢(t))’

where ¢(t) is arbitrary. When ¢(¢) is linear in ¢, the Fourier
transform gives the BW distribution. But if ¢(¢) is quadratic
or some other nonlinear function, the inverse Fourier trans-
form will be different from the BW function. A study of the
effects of various distortions of the BW energy density dlS-
tribution has been done by Chiu, Misra, and Sudarshan.!

ITI. EXPONENTIAL TIMES POLYNOMIAL DECAY:
WHICH ENERGY DENSITY DISTRIBUTIONS
GIVE RISE TO THIS TYPE OF DECAY?

We let A(r) take the most general form representing ex-
ponentials multiplied by polynomials with positive powers
of ¢

m n
AW=2 X Ciltfe EiToli @)
k=0 j=0
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To find an energy density distribution that could give rise to
this type of decay, we take the inverse Fourier transform of
A(2)

m n
> > cjk|,j|e—rklrle-iEkltl

k=0 j=0

o(E)=F YA(t))=F!
— E 2 ijfw Itlje“rkltle_iEkltleiElfl dt
m n w
=2 2 ijzoJ’ de~T¥ cos(ut)dt
i 0

m . P
=2 f 2 aut' V2K 4T t)cos(ut)dt

[2F7] [(E —E )2 1"2]1+1 (5)

We shall estimate the difference between the integration over
the whole real line of the energy variable E and the positive
real line. Since the difference between the two which con-
tributes significantly to the integral is a region of small en-
ergy, we expect any difference in the decay to appear for
large times. We are therefore interested in determining the
large-time behavior. The integration over the whole real line
results in the general form for A (¢) which is given in Eq. (4).

Calculation of A(t) from semibounded spectrum. If the
spectrum is limited to (0,0) we must use approximation
methods to calculate the decay.

A. Direct integration

We now calculate A (¢)

1 e "iEkt
=, (E- B+ T

L
L

= [1 e
mJ-E (u?+T3)'*1

age

ay; cos(ut)
4 [u2+r2]1+1 T3 ey du
a,,; sin(ut)

(u (2+T2)i*1

~iut

;o\ 1+
akle_iEt(—““‘) Kip1p(Tet)/T(1+1)

iakl 2ak,Ek

m[E;+T7]' "1

see
2

wt?(Ey+TH)2

Jakobovits, Rothschild, and Levitan 441



where K, 1,5(I's?) is a modified Bessel function of imagi-
nary argument. For example, some of the terms are as fol-
lows:

. 1 iaoo
Annl(t)= —iEgt,— Tyt
oolt)=aooe e oE T BT TD)
2a00E
22 T2\2
a(E2+T2) (62)

iall

, 1
Ap(D=a e Ere T (14T 1) AT T T
1 11y

2a11E1 (6b)
AET+TD>

Tt
ia12

Aplt)=a,e e TH(1+T
12(t)=aje e 2( 2t) 41’3 7rt(E§+I“§)2

2(112E2
T2 F2LT2\3° 6¢c
mtA(E;+T3)3 (6¢)
—iEyt ,~T'5t 2 1
Azz(t)=azze e "2 (3+3F2t+F2t ) Py 4
1673
iay 2ank,

m(E3-T3)° m(E3+T3)* (60
By only retaining the first term in the expansion for A gy(2),
the well known expression for A(¢), which can be found.in
any textbook on decaying systems, is recovered. The inclu-
sion of A;;(£), A1,(2), etc., would lead to a distortion of the
BW distribution and hence imply a different decay law.

In order to get a significant contribution from the second
term in A (¢), one must have I'y=FE, which is only fulfilled
for a very short lived (broad) state. In order that the expan-
sion should be valid one must demand that > 1/E, [in fact,
t=1/E, implies that the second term and the third in the
expansion of A yy(#) are identical].

B. The method of the steepest descent

We now apply the method of steepest descent to calculate
Aq(?). We first rewrite A((¢) in the following form:

AO(t)= ':; thde-J'de e—iEte—at[(E_E0)2+r2]
0 0

1 © ©
== Ft,fo da'j0 ef@g(2)dz, )
where
fz)=—iz—o[(z—E)*+T?]g(2)=1, ®)
f'(2)=—i—20(z—Eq)=0 for zg=Eq— 2’—0 ©)
f'(z)=—-20. (10)

We have no higher derivatives of f(z) different from zero
and g(z)=1 so the saddle point approximation contains just
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one term. We now can approximate the second integral in

Eq. (7)
\/;g(zo)
Ve|f"(z0)|

etf(zo)eia.

f e’ Ig(2)dz=
0
And hence

Vam

- o!(—iEg=1/20+1/40~0T?) 11)

- ki

20t

Ay(t)= i thw \ /_ZT_ et(—iE0—1/4a—0'F2)
T 0 to ’
[ ¢ w e t1/4T%c+1/40)
=T ——e_iEO’f dg ——,
T 0 \/;

dp=2T"do.

(12)

- P
p=20l', o= T
We therefore find that Eq. (7) becomes

\/7 e 1 o~ {(C12P+TP/2)
Ag(t)=T —e_iEO’f ~ dP
T
—lEot
=T I P ————

\/Te—iEOt
= \/— Kyp(T'1), (13)
™ \2r

where K is the modified Bessel function.

® e—x/2(s+l/s)
K (x)= J ds —er=v—
0

—-Ft/2(P+1/P)

s

K, (x)=

We finally get

2 2
Iip(x)=\ —coshx, 1= V — sin hx,
T 2 T
Kip®)=3 Nz e =V ¢ (14)

fe—iEot 1
Ao(t)=r —— K1/2(Ft)= - e_iEO'e—r'.
7T \Jar 2

So we conclude by use of the method of steepest descent
that just by retaining the leading term in the expansion of the
direct integral from zero to infinity one obtains a good ap-
proximation to the decay amphtude This result in fact, cor-
responds to the traditional expression for the decay ampli-
tude; this means that the contribution of the integration from
minus infinity to zero is generally negligible.

{1-,(x)—1(x)}.

2 sin v
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Asymptotic form of the penetration probability of the quantum harmonic
oscillator into the classically forbidden region
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The penetration probability of the quantum harmonic oscillator into the classically forbidden region
is examined in the limit of large quantum numbers using analytical methods. An expression is
derived for the asymptotic form of the penetration probability, and is shown to be in good agreement
with an earlier result obtained by numerical methods. The asymptotic form of the probability density
in the region between the classical turning points is also presented and found to have a simple
physical interpretation. © 1995 American Association of Physics Teachers.

The harmonic oscillator is one of the most ubiquitous and
useful idealizations in physics and physical chemistry, and
both its classical and quantum versions have been studied
extensively. Surprisingly, however, little seems to be known
about the quantum mechanical probability P(n) of finding
the oscillator outside the classical turning points when the
quantum number # is large, notwithstanding the obvious ex-
pectation, based on the correspondence principle, that this
probability must somehow tend to zero as the quantum num-
ber tends to infinity. A recent article! presented a conjecture,
supported by a purely numerical investigation, that this prob-
ability has the asymptotic form

P(n)=A(n+1/2)_1/3—B(n+1/2)‘1+... (1)

as n—o, with A=0.133 970 and B~0.011 907. The
main purpose of the present article is to derive an asymptotic
formula for this penetration probability using an analytic ar-
gument based on the behavior of the harmonic oscillator
eigenfunctions in the vicinity of the classical turning points
for large quantum numbers. It will be shown that this result
is identical in form to Eq. (1). Closed-form expressions will
be derived for the coefficients A and B, and their values will
be found to be quite close to those quoted above. The deri-
vation will also yield the order of the first neglected term;
this result will be discussed with the help of a numerical
analysis. As a further demonstration of the usefulness of the
asymptotic forms of the harmonic oscillator eigenfunctions,
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a formula for the quantum probability density inside the clas-
sical turning points in the large-n limit will be briefly derived
and seen to have a simple physical interpretation.

The energy eigenstate of the quantum harmonic oscillator
corresponding to the quantum number n has energy
E,=(n+1/2)hw relative to the potential minimum, and the
corresponding normalized eigenfunction is given by

()= (21 Tmxg) V2~ RH (x/x,),

where the H, are the Hermite polynomials, and
xo= V#i/mw. The classical turning points occur at

x=%+2wxq,

where for convenience, both here and later, we put
v=n+1/2. The probability of finding the oscillator outside
the classical turning points is therefore

w©

P(n)=2f

dx|,(x)|?
s 510

=2(2"n! \/;xo)_lf 45 €I H () P
on

or, changing the variable of integration from x to y=x/x,,
P(n)= m — f " dy e [H, ()P
(n)_znn! \/; v ye [ n(y)] . (2)
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