Experimental Observation of a Heavy Particle J^+

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Y. Y. Lee

Brookhaven National Laboratory, Upton, New York 11973

(Received 12 November 1974)

We report the observation of a heavy particle J, with mass $m = 3.1$ GeV and width approximately zero. The observation was made from the reaction $p + \text{Be} \rightarrow e^+ + e^- + x$ by measuring the e^+e^- mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's 30-GeV alternating-gradient synchrotron.

This experiment is part of a large program to study the behavior of timelike photons in $p + p \rightarrow e^+ + e^- + x$ reactions and to search for new particles which decay into e^+e^- and $\mu^+\mu^-$ pairs.

We use a slow extracted beam from the Brookhaven National Laboratory's alternating-gradient synchrotron. The beam intensity varies from 10^{10} to 2×10^{12} p/pulse. The beam is guided onto an extended target, normally nine pieces of 70-mil Be, to enable us to reject the pair accidentals by requiring the two tracks to come from the same origin. The beam intensity is monitored with a secondary emission counter, calibrated daily with a thin Al foil. The beam spot size is 3×6 mm2, and is monitored with closed-circuit television. Figure 1(a) shows the simplified side view of one arm of the spectrometer. The two arms are placed at 14.6° with respect to the incident beam; bending (by M_1, M_2) is done vertically to decouple the angle (θ) and the momentum (p) of the particle.

The Cherenkov counter C_o is filled with one atmosphere and C_e with 0.8 atmosphere of H$_2$. The counters C_o and C_e are decoupled by magnets M_1 and M_2. This enables us to reject knock-on electrons from C_o. Extensive and repeated calibra-

![Diagram of spectrometer arm](attachment:image1.png)

![Time-of-flight spectrum](attachment:image2.png)

![Pulse-height spectrum](attachment:image3.png)

FIG. 1. (a) Simplified side view of one of the spectrometer arms. (b) Time-of-flight spectrum of e^+e^- pairs and of those events with $3.0 < m < 3.2$ GeV. (c) Pulse-height spectrum of e^- (same for e^+) of the e^+e^- pair.
tion of all the counters is done with approximately 6-GeV electrons produced with a lead converter target. There are eleven planes (2×A0, 3×A, 3×B, 3×C) of proportional chambers rotated approximately 20° with respect to each other to reduce multitrack confusion. To further reduce the problem of operating the chambers at high rate, eight vertical and eight horizontal hodoscope counters are placed behind chambers A and B. Behind the largest chamber C (1 m × 1 m) there are two banks of 25 lead glass counters of 3 radiation lengths each, followed by one bank of lead-Lucite counters to further reject hadrons from electrons and to improve track identification. During the experiment all the counters are monitored with a PDP 11/45 computer and all high voltages are checked every 30 min.

The magnets were measured with a three-dimensional Hall probe. A total of 10⁶ points were mapped at various current settings. The acceptance of the spectrometer is Δθ = ±1°, Δφ = ±2°, Δm = 2 GeV. Thus the spectrometer enables us to map the e⁺e⁻ mass region from 1 to 5 GeV in three overlapping settings.

Figure 1(b) shows the time-of-flight spectrum between the e⁺ and e⁻ arms in the mass region 2.5 < m < 3.5 GeV. A clear peak of 1.5-nsec width is observed. This enables us to reject the accidentals easily. Track reconstruction between the two arms was made and again we have a clear-cut distinction between real pairs and accidentals. Figure 1(c) shows the shower and lead-glass pulse height spectrum for the events in the mass region 3.0 < m < 3.2 GeV. They are again in agreement with the calibration made by the e beam.

Typical data are shown in Fig. 2. There is a clear sharp enhancement at m = 3.1 GeV. Without folding in the 10⁶ mapped magnetic points and the radiative corrections, we estimate a mass resolution of 20 MeV. As seen from Fig. 2 the width of the particle is consistent with zero.

To ensure that the observed peak is indeed a real particle (J = e⁺e⁻) many experimental checks were made. We list seven examples:

1) When we decreased the magnet currents by 10%, the peak remained fixed at 3.1 GeV (see Fig. 2).

2) To check second-order effects on the target, we increased the target thickness by a factor of 2. The yield increased by a factor of 2, not by 4.

3) To check the pileup in the lead glass and shower counters, different runs with different voltage settings on the counters were made. No effect was observed on the yield of J.

4) To ensure that the peak is not due to scattering from the sides of magnets, cuts were made in the data to reduce the effective aperture. No significant reduction in the J yield was found.

5) To check the read-out system of the chambers and the triggering system of the hodoscopes, runs were made with a few planes of chambers deleted and with sections of the hodoscopes omitted from the trigger. No effect was observed on the J yield.

6) Runs with different beam intensity were made and the yield did not change.

7) To avoid systematic errors, half of the data were taken at each spectrometer polarity.

These and many other checks convinced us that we have observed a real massive particle J = ee.

If we assume a production mechanism for J to be \(d \sigma/dp_1 \propto \exp(-6p_1) \) we obtain a yield of J of ap-
proximately 10^{-34} cm2.

The most striking feature of J is the possibility that it may be one of the theoretically suggested charmed particles, or $a's$, or $Z_0's$, etc. In order to study the real nature of J, measurements are now underway on the various decay modes, e.g., an e^+e^- mode would imply that J is weakly interacting in nature.

It is also important to note the absence of an e^+e^- continuum, which contradicts the predictions of parton models.

We wish to thank Dr. R. R. Rau and the alternating-gradient synchrotron staff who have done an outstanding job in setting up and maintaining this experiment. We thank especially Dr. F. Eppling, B. M. Ballew, and the staff of the Laboratory for Nuclear Science for their help and encouragement. We thank also Ms. I. Schulz, Ms. H. Feind, N. Feind, D. Osborne, G. Krey, J. Donahue, and E. D. Weiner for help and assistance. We thank also M. Deutsch, V. F. Weisskopf, T. T. Wu, S. Drell, and S. Glashow for many interesting conversations.

*Accepted without review under policy announced in Editorial of 20 July 1964 [Phys. Rev. Lett. 13, 79 (1964)].

1The first work on $p + p \rightarrow \mu^+ + \mu^- + x$ was done by L. M. Lederman et al., Phys. Rev. Lett. 25, 1523 (1970).

2S. L. Glashow, private communication.

5After completion of this paper, we learned of a similar result from SPEAR, B. Richter and W. Panofsky, private communication; J. E. Augustin et al., following letter [Phys. Rev. Lett. 33, 1404 (1974)].

Discovery of a Narrow Resonance in e^+e^- Annihilation*

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720

(Received 19 November 1974)

We have observed a very sharp peak in the cross section for $e^+e^- \rightarrow$ hadrons, e^+e^-, and possibly $\mu^+\mu^-$ at a center-of-mass energy of 3.105 ± 0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.

We have observed a very sharp peak in the cross section for $e^+e^- \rightarrow$ hadrons, e^+e^-, and possibly $\mu^+\mu^-$ in the Stanford Linear Accelerator Center (SLAC)—Lawrence Berkeley Laboratory magnetic detector at the SLAC electron-positron storage ring SPEAR. The resonance has the parameters

$$E = 3.105 \pm 0.003 \text{ GeV},$$

$$\Gamma = 1.3 \text{ MeV}$$

(full width at half-maximum), where the uncertainty in the energy of the resonance reflects the uncertainty in the absolute energy calibration of the storage ring. [We suggest naming this structure $\psi(3105)$.] The cross section for hadron production at the peak of the resonance is ≥ 2300 nb, an enhancement of about 100 times the cross section outside the resonance. The large mass, large cross section, and narrow width of this structure are entirely unexpected.

Our attention was first drawn to the possibility of structure in the $e^+e^- \rightarrow$ hadron cross section during a scan of the cross section carried out in 200-MeV steps. A 30% (6 nb) enhancement was
observed at a c.m. energy of 3.2 GeV. Subsequently, we repeated the measurement at 3.2 GeV and also made measurements at 3.1 and 3.3 GeV. The 3.2-GeV results reproduced, the 3.3-GeV measurement showed no enhancement, but the 3.1-GeV measurements were internally inconsistent—six out of eight runs giving a low cross section and two runs giving a factor of 3 to 5 higher cross section. This pattern could have been caused by a very narrow resonance at an energy slightly larger than the nominal 3.1-GeV setting of the storage ring, the inconsistent 3.1-GeV cross sections then being caused by setting errors in the ring energy. The 3.2-GeV enhancement would arise from radiative corrections which give a high-energy tail to the structure.

We have now repeated the measurements using much finer energy steps and using a nuclear magnetic resonance magnetometer to monitor the ring energy. The magnetometer, coupled with measurements of the circulating beam position in the storage ring made at sixteen points around the orbit, allowed the relative energy to be determined to 1 part in 10^4. The determination of the absolute energy setting of the ring requires the knowledge of \(\int B \, dl \) around the orbit and is accurate to \(\pm 0.1 \% \).

The data are shown in Fig. 1. All cross sections are normalized to Bhabha scattering at 20 mrad. The cross section for the production of hadrons is shown in Fig. 1(a). Hadronic events are required to have in the final state either \(\geq 3 \) detected charged particles or 2 charged particles noncoplanar by \(> 20^\circ \). \(^3\) The observed cross section rises sharply from a level of about 25 nb to a value of 2300 ± 200 nb at the peak and then exhibits the long high-energy tail characteristic of radiative corrections in \(e^+e^- \) reactions. The detection efficiency for hadronic events is 45% over the region shown. The error quoted above includes both the statistical error and a 7% contribution from uncertainty in the detection efficiency.

Our mass resolution is determined by the energy spread in the colliding beams which arises from quantum fluctuations in the synchrotron radiation emitted by the beams. The expected Gaussian c.m. energy distribution (\(\sigma = 0.56 \) MeV), folded with the radiative processes, is shown as the dashed curve in Fig. 1(a). The width of the resonance must be smaller than this spread; thus an upper limit to the full width at half-maximum is 1.3 MeV.

Figure 1(b) shows the cross section for \(e^+e^- \) final states. Outside the peak this cross section is equal to the Bhabha cross section integrated over the acceptance of the apparatus. \(^4\)

Figure 1(c) shows the cross section for the production of collinear pairs of particles, excluding electrons. At present, our muon identi-
fications system is not functioning and we therefore cannot separate muons from strongly interacting particles. However, outside the peak the data are consistent with our previously measured μ-pair cross section. Since a large $\pi\pi$ or KK branching ratio would be unexpected for a resonance this massive, the two-body enhancement observed is probably but not conclusively in the μ-pair channel.

The e^+e^- hadron cross section is presumed to go through the one-photon intermediate state with angular momentum, parity, and charge conjugation quantum numbers $j^{PC}=1^{-+}$. It is difficult to understand how, without involving new quantum numbers or selection rules, a resonance in this state which decays to hadrons could be so narrow.

We wish to thank the SPEAR operations staff for providing the stable conditions of machine performance necessary for this experiment. Special monitoring and control techniques were developed on very short notice and performed excellently.

*Work supported by the U. S. Atomic Energy Commission.

1Present address: Laboratoire de l’Accélérateur Linéaire, Centre d’Orsay de l’Université de Paris, 91 Orsay, France.

1Permanent address: CERN, Geneva, Switzerland.

1Permanent address: Centre d’Etudes Nucléaires de Saclay, Saclay, France.

2The apparatus is described by J.-E. Augustin et al., to be published.

3The detection-efficiency determination will be described in a future publication.

While preparing this manuscript we were informed that the Massachusetts Institute of Technology group studying the reaction $pp\rightarrow e^+e^-\pi^0$ at Brookhaven National Laboratory has observed an enhancement in the e^+e^- mass distribution at about 3100 MeV. J. J. Aubert et al., preceding Letter [Phys. Rev. Lett. 33, 1402 (1974)].

Preliminary Result of Frascati (ADONE) on the Nature of a New 3.1-GeV Particle Produced in e^+e^- Annihilation

The Gamma-Gamma Group, Laboratori Nazionali di Frascati, Frascati, Italy

and

The Magnet Experimental Group for ADONE, Laboratori Nazionali di Frascati, Frascati, Italy

and

The Baryon-Antibaryon Group, Laboratori Nazionali di Frascati, Frascati, Italy

(Received 18 November 1974)

We report on the results at ADONE to study the properties of the newly found 3.1-BeV particle.

Soon after the news that a particle of 3.1 GeV with a width consistent with zero had been observed at Brookhaven National Laboratory by the Massachusetts Institute of Technology group, it was immediately decided to push ADONE beyond its nominal limit of energy (2×1.5 GeV) to look for this particle. On the following day the information had reached us that this particle had also been observed at SPEAR at the energy of exactly 3.10 GeV with a narrow width, <1.3 MeV.

Three experiments [the Gamma-Gamma Group, the Magnet Experimental Group for ADONE]