of this book he treats inter alia Boltzmann’s H-theorem by
means of the grand canonical ensemble. In doing so, he
generalizes the n and  of his canonical ensemble to H and
¥, where the mean value of H is Boltzmann’s function. He
shows on p. 200 that these quantities correspond to the
negative entropy and the free energy of thermodynamics.
As seen from the way it is introduced, the symbol H is
clearly meant as a capital 5. This is also definitely verified
by the fact that this H, like all other capital Greek letters
in the book, is printed vertical (nonslanted), while capital
Latin letters are printed with italics (slanted types), as il-
lustrated by the symbols on p. 200, and by the Latin F on
p. 158 compared to the Greek E (epsilon) on p. 177. We
may also note that Zermelo in his German translation of
the book in 1905 also maintains the same classification of
the capital letters, although by other. typographical
means.

The given graphical evidence, of which a detailed account
is presented elsewhere,® seems to leave no reasonable doubt

that during the decade before Boltzmann’s death in 1906
at least he himself, Gibbs, and Zermelo meant a capital eta
when they wrote H for Boltzmann’s function. This suggests
that the whole problem of the adoption of the symbol H has
a connection with Gibbs and his ensemble-statistical ideas,
surely well known to leading scientists long before the
publication in 1902.

'L.. Boltzmann, Wien Ber. 66, 275 (1872).

’L. Boltzmann, Vorlesungen iiber Gastheorie, I Theil (Barth, Leipzig,
1896).

*S. G. Brush, Arch. Hist. Exact Sci. 12, 1 (1974).

4S. G. Brush, Am. J. Phys. 35, 892 (1967).

NJ. W. Gibbs, Elementary Principles in Statistical Mechanics (Scribner,
New York, 1902); reprinted in facsimile in The Collected Works of J.
Willard Gibbs, Vol. 11 (Yale U. P., New Haven, CT, 1928).

S. Hjalmars, TRITA-MEK-76-01, Technical Reports from the Royal
Institute of Technology, Department of Mechanics, S-10044 Stockholm,
Sweden. (Free of cost on request from the Department.)

When a Gaussian distribution won’t do: A short comment on statistics

D. W. Schlitt
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(Received 30 January 1976; revised 15 April 1976)

The normal or Gaussian probability distribution rests
at the foundation of most of the statistical methods familiar
to physicists. The x?2 test, the F test, Student’s ¢ test, etc.,
each rest on the assumption that some specific quantity has
a normal distribution.

What do we do if we know that this assumption of a
normal distribution is not valid. A recent paper in this
Journal' spoke to this question for the case of a Poisson
distribution. The author represented the deviation of the
Poisson distribution from the normal distribution in terms
of a polynomial and made some interesting comments on
his result. He did not, however, apply his result to any
practical problem in statistics. This is probably because the
result is not convenient to use for such things as estimating
lifetimes.2 The purpose of this note is to point out some
statistical methods which are convenient to use and to give
a simple illustration of the use of one of them.

Statisticians are well aware that not all populations are
normally distributed. They have proceeded to develop
techniques to use in such cases. Because they often are not
discussed in introductory courses in statistics, they have only
slowly come into common use in physics.

In order to avoid the assumption of a normal distribution
or any specific distribution, a group of methods known as
distribution-free or nonparametric methods have been de-
veloped; the idea of the robustness of a statistical test has
been introduced. A test is robust if it is independent or in-
sensitive to departures from the assumed distribution. A
discussion of such tests (directed at physicists) can be found
in Ref. 3 and more detailed discussion is given in Ref. 4. The
x? test can be replaced by such distribution-free tests as the
Cramer-von Mises test or the Kolmogorov-Smirnov test.
An example of a recent application of these methods in

2158 Am. J. Phys., Vol. 45, No. 2, February 1977

physics can be found in the work of Ludlam and Slan-
sky.>

A typical physics application of statistics is the extraction
of an estimate for a physical quantity from experimental
data. An example mentioned in Ref. 1 is the determination
of a decay constant from counting data. This is an example
of the type we are concerned with. We know the number of
counts has a Poisson distribution and not a normal distri-
bution. Use of a least-squares or x2 method to find the decay
constant would immediately suggest itself. As we will see
below, these methods are based on an assumption of a
normal distribution.

An alternative which can be used if the probability dis-
tribution is known, even if it is not normal, is the maximum
likelihood method. It is instructive to look at this method
in the case of a decay problem. The calculation is simplified
version of example 30.20 of Ref. 6. For those interested in
a deeper discussion of this problem an early paper by
Peierls” is of interest. A recent discussion can be found in
Ref. 8.

The experiment we consider is one where we count the
number of decays in a sample for a time interval A¢; cen-
tered at a time #; and obtain n; counts. We do this for N
different intervals. The probability of getting n; counts in
the ith interval has a Poisson probability distribution

P = (n!)~u;" exp(—u;), )

where u; is the expected number of counts. If the decay
constant is A, then the expected number of counts is ap-
proximately (assuming no background counts in #;)

wi = NoAAt; exp(—Ai;). (2)

We choose this form rather than more exact forms for al-
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gebraic simplicity.®

The problem is to determine “best” values N and A from
the experimental data. For this we use the principle of
maximum likelihood. The probability (or likelihood) of
getting a set of counts {n;} is

N N
L= Hl Pi= Hl (1)~ ;" exp(—ai). (3)
i= =
We want to choose N and A so this is a maximum for the

measured values of {n;}. It is more convenient to do the
equivalent problem of maximizing InL:

N
InL= ¥ [ In; ~ ; = In(n)]

i=1

[l
Mz

[#; InNg + n; In(AAL;) — niAt;

—NohAtL; exp(—=At;) — In(n))].  (4)

The maximum is found by setting the partial derivatives
of this with respect to A and N equal to zero. The resulting
equations can be written

[ ~ NoAAt; exp(=At;)] = 0 (5)

i=1

and

z

[n;t; — Noht; At; exp(—At;)] = 0. (6)
|

[

Notice that the first of these equations requires that the
total number of counts be equal to the expected total
number of counts. The second states that the observed mean
decay time is equal to the expected mean decay time. These
are the requirements which we would naturally write down.
That they are also the result of maximizing the likelihood
function is reassuring.

Suppose that instead of the Poisson distribution (1) we
had taken a normal distribution

P; = (27)~"20; 7V exp[—(m; — u;)¥/20:%], 7

where the ¢; are assumed to be known. The equation which
replaces (4) is

N ¢ [+ =]
InL = — —In(27) ~ e
n 3 n(2w) iZ_:l [lna, + 202

[n; — No)\AtizeXp(_Ati)]z. (8)

Ly
2 i=1 Ui
Because we have assumed the o; are known, the equation
is essentially the same as typical least-squares or x> method.
The values to be used for the o; are those estimated from
the data,'® which in this case would be n;!/2.

From (8) the equations which determine Ny and A are

N At exp(— M)
2

= const —

[n,~ — NoAAt; CXp(—At,')] =0 (9)

i=1 g;
and
% At; cxpfg— Ati)

i= [

[n,-t,- — NoAt; At; CXp(—At,')] =0. (10)

These are not the correct equations to use for our problem,
but they are the ones which would result from a least-
squares estimate for A.

Through comparison of this result with the one where a
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Poisson distribution is assumed [Egs. (5) and (6)], we see
they are the same except for the factor At;a; =2 exp(—At;).
If this quantity turned out to be independent of 7, the re-
sulting XA would be the same. This factor can be estimated.
If the distribution is Poisson, the ¢;2 = y; and

At,'()',"—z exp(—}\ti) = I/N())\, (“)

which is independent of 7. This indicates that little differ-
ence between the two methods is expected.

It should be noted that using ¢;2 = u; for this estimate
is different from doing the same thing in Eq. (8). Also, it is
just an estimate; when using Eqgs. (9) and (10) to find A, we
would use o;% = n; as previously noted.

An alternate estimate throws some light on the / depen-
dence of the factor. Instead of using the expected value of
n; for the estimate, as we did above, we can use the most
probable value. The most probable value of #; for Poisson
distribution is u; — '5. This results in an estimate

At;o; =2 exp(—At) = [NoA(1 = 2/p)]~" (12)

The result depends on i and is very close to the previous
estimate when u; is large. On the other hand, it illustrates
why the least-squares method is less desirable than a
maximum likelihood calculation based on the Poisson dis-
tribution. The estimate in Eq. (12) indicates that intervals
with fewer counts are weighted more heavily than those
with large numbers of counts. Nevertheless, in a well de-
signed experiment with a reasonable number of counts in
each interval the difference between the two methods will
be small.

The observant reader will be surprised by this result. The
Poisson distribution is always skewed below the mean while
the normal distribution is symmetric. The systematic bias
should make itself felt and cause a distinct difference in the
estimates of the decay constant.

This qualitative conclusion is wrong because of a very
important property of maximum likelihood estimates; re-
member from what we saw above that this includes least-
squares methods. The estimates we obtain are consistent,
meaning that the estimate converges toward the true value
as the number of observations increases. However, the es-
timates are not unbiased.

If we were to repeat our experiment and get a new esti-
mate of A, it would be expected to differ from the first value
because of the finite size of the “sample.” Thus there is a
distribution for the values of A and we can conceive of an
expected or average value of A from this distribution. The
difference between this expected value for a given size
sample and the true value for the whole population is what
we mean by the bias of an estimate. If the estimate is un-
biased, then the expected value of the estimate and the true
value are the same.

Maximum likelihood estimates are consistent but, in
general, biased. The bias in the estimate is the reason that
the weighted least-squares method and the Poisson distri-
bution can give nearly the same estimate for A even though
one distribution is skewed and the other symmetric. The
bias of the estimates will not necessarily compensate as they
do in this case. It is possible to correct for the bias in esti-
mates,>® but it usually is not worth the large effort re-
quired.
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Term projects: An alternative to term papers in introductory courses

F. R. Hickey
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Two recent notes'-2 describe the use of term papers
and/or experimental projects in introductory physics
courses. For the past four years, I have required a term
project in Physics 100, a course in twentieth century physics
for non-science majors. Since these projects are quite dif-
ferent from those already described, my experience may be
of interest to teachers of similar courses.

The purpose of requiring a project is to help students
relate the ideas encountered in the course to their own in-
terests, hobbies, or professional goals. At the beginning of
the term, a written list of suggestions for possible projects
is given to the students. A term paper, if the topic is unique
and original, is an acceptable way to fulfill the requirement,
but students are strongly encouraged to explore their cre-
ativity and devise a project which holds special interest for
them. The viewpoint of the liberal arts major is quite dif-
ferent from that of the physicist and this has resulted in

Table I. A selection of term projects conceived and executed by
students in Physics 100.

Three original piano compositions which used only certain parts of
the keyboard corresponding to allowed transitions in the Bohr
atom.

An embroidery of formulas and pictures centering around the
Sophist quotation ““Man is the measure of all things.”

An 8 mm film dealing with conservation of energy and momentum.

Three original folk songs, each dealing humorously with a topic
from 20th century physics. ’

A full size comic section of a newspaper. Each of the six “comic
strips” treats a different topic covered in the course.

Several original sculptures. The best, made from a solid piece of
aluminum, is an interpretation of the Dirac “hole theory.”

An orginal story using the concept of time in a manner similar to
the way in which L. Durell uses it in Justine.

Several Styrofoam models dealing with topics from special relativity.

Scale drawings of a length-contracted Starship Enterprise traveling
at speeds corresponding to 8 =0, 0.5, and 0.9.

An original illustrated story starring a well-known cartoon character
flying his doghouse at relativistic speeds and encountering the
effects of length contraction, time dilation, and velocity addition.
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some projects that seemed to me unique and impressive.

Table [ lists some of the best projects. One example of the
way in which a student related physics to her discipline is
given by the first entry in the table. Ann Cuzzi, a music
education major, projected a drawing of the Bohr model
of the atom on a piano keyboard. With the nucleus centered
at middle C on the keyboard, only several notes on each side
of middle C are included in the region between any given
pair of allowed orbits. Using only those piano keys which
lie in the regions corresponding to the energy change related
to the first three wavelengths of the Lyman, Balmer, and
Paschen series, respectively, she composed three original
musical pieces. Other projects listed in the table present a
sampling of ways in which other students have related the
course material to their hobbies or personal interests.

To insure that students begin to work on their project
early in the term, a brief outline is due on a specific date
approximately five weeks after the beginning of the term.
This also serves to establish communication between me and
cach student as to the acceptability and judiciousness of the
topic chosen. Once a topic has been mutually agreed upon,
it cannot be changed without permission.

The most difficult task for the instructor is evaluating the
projects. Grading is necessarily subjective and is based on
the student’s originality, creativity and the degree to which
he/she accomplishes the goal previously agreed upon. The
projects count as the equivalent of one written examination
or approximately 25% of the final grade. Our college has
a provision for adding a written comment to a student’s
transcript in addition to the grade, and I make it known to
the class that I will write a comment for outstandirig
projects.

In general, students enjoy working on the projects, and
sometimes present them to the class during the last week
of the term. In the words of one student: “Being and feeling
rewarded for creativity was a refreshing and beautiful

thing.”

'W.S. Williams, Am. J. Phys. 43, 550 (1975).

“R. A. Brown, Am. J. Phys. 44, 393 (1976).
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