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There are many examples in nature of random process-
es which have a constant probability of occurrence.! The
fluctuations in the number of events arising from such a
process during a fixed time interval follow the Poisson
frequency distribution?

P(L, n) = exp(= k)u"/n!, 1)

where w is the average number of events obtained over
many repeated trial intervals, n is the number of events
which occur during a particular trial interval, and P is the
fraction of repeated trial intervals which will yield a value
n. It is well known that this distribution is skewed so that
the median® and most probable? values lie below the
mean. However, if the time interval of a trial is made
sufficiently long that w becomes a ‘‘large number,”” the
Poisson distribution asymptotically approaches a Gaussian
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density function of the same mean and variance as Eq.
(1), given by

Ol n)= @iy 2 expl= (i nf/20) (@)

Many data analysis techniques, such as the method of
least squares, the x2 test, the F test, the Student ¢ test,
etc., are based in part on the assumption of a normal
Gaussian distribution and are applicable to a Poisson dis-
tribution only if the asymptotic limit of Eq. (2) is appro-
priately achieved. For example, if atomic or nuclear count-
ing data are to be fitted to a theoretical form, the desired
fit is not rigorously obtained by minimizing the mean
square deviations from the mean, since the Poisson dis-
tribution is always skewed below the mean. When this
involves a decay curve measurement, the problem is
further compounded by the fact that the average number
of counts detected may decrease by several orders of mag-
nitude over the decay curve so that the degree to which it
approaches the asymptotic density is not uniform. For
such cases it would be valuable to develop criteria for the
Gaussian asymptotic limit to the Poisson distribution in
terms of . For this reason we have examined the relative
difference between Eqs. (1) and (2) near the peak and
found that it has a very simple polynomial form which is
valid for essentially any value of w. This provides a pic-
torial model for the errors in a Gaussian representation of
a Poisson distribution, exposes the positions of maximum
and minimum (zero) error which characterize the asym-
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metries of the distribution, and is useful both in the
treatment of experimental data and as a pedagogic device
to display the basic relationships between these two im-
portant distributions.

To facilitate calculation, Eq. (1) can be conveniently
rewritten by using Stirling’s approximation for the facto-
rial,

n! =@mn)/*(n/e), (3)

where the error in the approximation is less than 8% for
n = 1 and vanishes as 1/12 n for large n. Thus Eq. (1) be-
comes, to this approximation,

P(u, n)= @rp)" 2expln — w)(k/n)y* /2. @)

It is well known® that, in the limit of large w, Eq. (4)
approaches Eq. (2). Corrections to this approximation
have been computed by Fry,® but direct expansion of Eq.
(4) leads to tedious algebra and cumbersome expressions
which are difficult to interpret. We have obtained a more
tractable expansion for these corrections through consid-
eration fo the logarithmic ratio of Egs. (4) and (2), with n
reexpressed with respect to the mean by d=n — pu,
which is given by

In(G/P)==6-5%/2u + (L +6+3)In(1+6/u). (5)

A neatly ordered expansion can be obtained if this ex-
pression is refactored into the form

In(G/P)=31n(1+6/p)+6[In(1+6/1) - 6/1]
+ (1 +6/1) =6/ +6%/2p%].  (6)

Expanding the logarithms on both sides of this equation
for 6% < u?,

Retaining only the dominant terms (it is important to note
that 82 is of order w near the peak), we obtain

G_Pza—ﬁmu
P 20 ’

)

which describes the relative error with high reliability in
the vicinity of the peak even for low values of w. Notice
that Eq. (8) has zeros for 8 = 0, + (3w)"?, which corre-
spond to the crossings of the two curves, and has extrema
for 8 = = ()2, which correspond to the maximum rela-
tive errors in the peak region (larger relative errors occur
on the tails). The latter are
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Fig. 1. (a) Gaussian (solid curve) and Poisson (circles) distributions for
= 3. The Poisson distribution is correctly a histogram, but is com-
puted for noninteger n (dashed curve) for comparison purposes. (b)
Relative error in the Gaussian distribution. Exactly calculated values
(crosses) are compared with the approximation of Eq. (8) (solid curve).

[(G = P)/Plpae=+(3Vi)" (9)

These five characteristic points are useful in visualizing
the dependence. The expansion restriction 82 < u? is
satisfied within the peak region between the off-mean
crossings (82 < 3u) for values w = 3. The exactly calcu-
lated Poisson and Gaussian curves for u = 3 are com-
pared in Fig. 1(a), and subtracted differences relative to
the Poisson curve, together with the predictions for these
values given by Eq. (8), are shown in Fig. 1(b). The
crossings and extrema agree well with the predictions
here, and quantitative agreement occurs for even smaller
values of w (e.g., u =2, 1, %, etc.), although there the
lower crossings occur in the nonphysical continuation of
the curves into the region of negative n. For higher u,
Eq. (8) gives increasingly precise results.

The standard measures of the asymmetry of a distribu-
tion (coefficient of skewness, cumulative probability be-
tween the median and mean, etc.) all indicate that the
Poisson distribution is skewed below the mean by an
amount proportional to (1/u)"?, exactly as would be de-
duced by consideration of Eq. (9) alone. Thus it is clear
that the majority of the skewness arises from the regions
between the zero error crossings, which is only partially
offset by contributions from the tails, and correct qualita-
tive inferences can be drawn by consideration of this re-
gion only. It is interesting that the measures of the skew-
ness of the Poisson distribution approach zero as (1/u)"?,
just as does the ratio of the standard deviation to the
mean. Thus it could be said with some justification that
the Gaussian limit is approached no faster than the delta
function limit, since the skewness becomes negligible
only when the scatter about the mean also becomes neg-
ligible. Clearly, there are aspects of the Gaussian assump-
tion which are not particularly sensitive to a slight skew-
ness error, but the persistence of this Poisson skewness
for large w is not emphasized in most statistics textbooks.



The approach of the Poisson distribution to the Gaus-
sian form can be confusing to students and researchers
alike. For example, one can compare the statement of one
author? that ‘‘the normal approximation to the Poisson
distribution is quite adequate for values of w = 8" with
that of another author® that ‘‘the Poisson distribution is
always skewed about the mean and rather more so for
counts below about 100.”” Both of these statements are
correct in a proper context, which includes a careful as-
sessment of acceptable inaccuracies. These considerations
become especially important if nonstatistical uncertainties
are reduced to a small fraction of 1%, in which case
small deviations from a Gaussian distribution can contrib-
ute significant errors (which are not accounted for in
many standardized computer programs). The formulation
presented here provides a convenient model for compar-
ing the Poisson corrections to the Gaussian assumption
with other known sources of inaccuracy.

!Among the more illustrious examples are the distribution in time of
Prussian Cavalry soldiers killed by the kick of a horse [cf. L. von
Bortkiewicz, Das Gesetz der kleinen Zahlen (Teubner, Leipzig, 1898)] ,
outbreaks of war [cf. L. F. Richardson, J. R. Stat. Soc. 107, 242
(1945); and in The World of Mathematics, edited by J. R. Newman
(Simon and Schuster, New York, 1956), pp. 125%1263], telephone
trunk traffic [cf. E. C. Molina, Poisson’s Ex})onential Binomial
Limit (Van Nostrand, New York, 1942)], and atomic and nuclear
decay processes [cf. P. F. Hinrichsen, Am. J. Phys. 42, 231

(1974)]. Similar examples can also be drawn from spatial distribu-
tions, for example, the number of yeast cells visible in the field of a
microscope at a given moment [cf. W. S. Gossett (pseud. ‘‘Student’”),
Biometrika 5, 351 (1907)].
%S. D. Poisson, Recherches sur la probabilité des jugements en matiere
criminelle et en matiére civile (Bachelier, Paris, 1837). The work grew
out of a study of the application of probability theory to the decisions of
juries.
can be readily demonstrated numerically that the median value occurs
at approximately u — 1/6, through consideration of the cumulative
probability C(u,N) = 3,y P(u,n). This provides an interesting stu-
dent exercise on a small computer, and can be achieved either by
choosing various values for the integer N and showing that C = %
when p =N + % (since the Nth bin is centered at N, the median is
then at N + Y), or by choosing various values for u and linearly in-
terpolating C between integer N values to locate C = %.
*The most probable value (or mode) has been shown to be at approxi-
mately # — % by J. R. Priest [Am. J. Phys. 38, 658 (1970)].
5The “‘Gaussian’" form of the binomial expansion was first obtained by
A. De Moivre, Approximatio ad Summam Terminorum Binomii
(a +b)" in Seriem Expansi (London, 1733). An English translation
of this article is given in D. E. Smith’s Source Book in Mathematics
(McGraw-Hill, New York, 1929), pp. 566-575. This paper predates
the work of J. Stirling and of C. F. Gauss by many years, and both
Egs. (2) and (3) should properly be credited to De Moivre. Refer-
ences to many of the original papers on probability are given by M.
G. Bulmer, Principles of Statistics (MIT, Cambridge, MA, 1965).
8T. C. Fry, Probability and its Engineering Uses (Van Nostrand, New
York, 1928), p. 238.
"B. R. Martin, Statistics for Physicists (Academic, London, 1971), p. 41.
8P, H. R. Orth, W. R. Falk, and G. Jones, Nucl. Instrum. Methods 65,
301 (1968).
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