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ABSTRACT

The spins of nine stellar-mass black holes have been estimated by fitting their

X-ray continuum spectra to a relativistic accretion disk model. In order to obtain

reliable spin results by this method, it is essential to have an accurate value for

the inclination of the inner, X-ray-emitting portion of the disk, which (via the

Bardeen-Petterson effect) will be the same as the inclination of the black hole’s

spin vector. In practical applications of the continuum-fitting method, one uses

the inclination of the orbital plane of the host binary, as determined from optical

observations. That is, one assumes that the black hole’s spin axis (and hence

the jet axis) is aligned with the orbital vector. The microquasar XTE J1550–564

offers a near-unique opportunity to test this assumption. Building on earlier work

and using Chandra and radio images, we have modeled the kinematic motion of

the ballistic jets of this microquasar and determined the degree of alignment.

Our jet model gives a high inclination for the black hole’s spin axis, θ > 65◦.

Comparing this constraint with the inclination of the orbital plane, we find that

the spin and orbital vectors are misaligned by < 12 deg (90% confidence).

Subject headings: black hole physics — stars: individual (XTE J1550–564) —

X-rays: binaries

1. Introduction

Although it is thought that the Galaxy is host to tens of millions of stellar-mass black

holes, only about 50 have been discovered (Özel et al. 2010). All of them are accretion-

powered X-ray sources that are located in X-ray binary systems. Most such systems, which

1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.
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are similar to our featured black-hole binary XTE J1550–564, have short orbital periods

(P ∼ 1d) and are comprised of a low-mass (. 1M⊙) donor star and a ∼ 10M⊙ black hole. A

stream of gas from the Roche-lobe-filling star feeds into the outer part of an accretion disk

that encircles the black hole. On a time scale of weeks, viscous forces in the disk cause gas to

move radially inward to the center. Within a few hundred kilometers of the black hole, the

optically-thick gas reaches a temperature of ∼ 107K and produces an X-ray luminosity that

is near the Eddington limit (L ∼ 1039 erg s−1). Accretion onto the black hole is not a steady

process: A typical source is luminous for only about a year, and then deeply quiescent for

years or decades.

XTE J1550–564 (hereafter J1550) is a much-studied Galactic black-hole transient system

that was discovered on 1998 September 6 using the All-Sky Monitor (ASM) on board the

Rossi X-ray Timing Explorer (RXTE). Thereafter, it was observed almost daily during its

entire 8-month outburst cycle using RXTE’s pointed instruments (Sobczak et al. 2000).

Two weeks into outburst, the source produced a brilliant 7-Crab flare corresponding to a

fourfold increase in intensity, during which the source was at or near its Eddington limit for

≈ 1 day. Four days later, radio observations made using the Australian Long Baseline Array

(LBA) revealed relativistic ejecta moving both eastward and westward from J1550. The two

components were observed to be separated by ∼ 250 mas and moving at relative speed of

µapp ≈ 65 mas/d, equivalent to an apparent separation velocity of ∼ 1.66c (Hannikainen et al.

2009). Nearly two years later, Chandra imaging observations revealed large-scale (& 20′′)

relativistic jets undergoing deceleration. This landmark discovery of a pair of ballistic X-ray

jets was the first detection of its kind for a Galactic source.

By modeling an extensive collection of optical and infrared data for J1550, Orosz et al.

(2011) have determined the mass of the black hole primary, MBH = 9.1±0.6M⊙, the distance

to the binary, D = 4.38+0.58
−0.41 kpc, and the inclination of its orbital plane, i = 74.◦7 ± 3.◦8.

Assuming that the black hole’s spin is aligned with the orbital angular momentum, Steiner

et al. (2011) have measured the spin using the continuum-fitting method to be a∗ = 0.34+0.20
−0.28,

where a∗ ≡ cJ/GM2 is the blacktimescale hole’s dimensionless spin parameter and J its

angular momentum. Steiner et al. also measured the spin using the independent Fe-line

method and find a∗ = 0.55+0.10
−0.15; taken together, the two measurements imply a∗ ≈ 0.5. In

constraining spin via either the continuum-fitting or Fe-line methods, one relies respectively

on a model for the thermal emission from an accretion disk (Zhang et al. 1997) or a model of

the relativistically broadened fluorescence features emitted by the disk (Fabian et al. 1989).
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For a low-mass black-hole binary system like J1550, the ratio of orbital- to spin-angular

momentum is given by

Jorb/Jspin ≈ 65.4 a−1
∗

(

MBH

10 M⊙

)−4/3 (

M2

M⊙

) (

P

1 d

)1/3

, (1)

where M2 is the mass of the secondary star. For J1550, this ratio is ∼50, and thus it is

reasonable to expect that given a means of interaction, the black hole’s spin will eventually

come into alignment with the orbital angular momentum. The timescale for this to occur

is an important question for the continuum-fitting method, which usually assumes that the

two vectors are aligned.

If there is an initial misalignment between the spin and the orbital angular momentum,

then Lense-Thirring precession will cause the inner X-ray-emitting portion of the disk to

line up with spin of the black hole (Bardeen & Petterson 1975). At the same time, at very

large scales, the disk will align itself with the orbital plane, and the transition between these

regimes will manifest as a warp in the disk. If any misalignment is present, the black hole will

be torqued into alignment by the accreting matter acting with a lever arm of order the warp

radius (e.g., Natarajan & Pringle 1998). Using the most conservative (minimum-torque)

assumption, Fragos et al. (2010) carried out a population synthesis study and concluded

that most black holes in binary systems will be tilted less than 10◦. Fragos et al. assumed

that the torque acts at the inner-most stable circular orbit, RISCO = 6GM/c2 for a∗ = 0,

whereas the warp radius has been estimated to be Rw ≈ 200GM/c2 (King et al. 2005; Lodato

& Pringle 2006).

The timescale for accretion to torque the black-hole into alignment has been variously

estimated as talign ∼ 106 − 108 years (Martin et al. 2009; Maccarone 20021). For a typical

black-hole binary, alignment should occur after just a few percent of the binary lifetime,

so that most observed systems will be well aligned. However, given that tens of black-

hole systems are known, based upon extrapolations from the supernova kicks imparted onto

neutron star systems, it is expected that one or even a few may harbor a black hole which

is significant tilted with respect to the binary orbital plane.

While this expectation is set by theory, it remains observationally challenging to identify

misaligned systems and even to measure the degree of alignment in a particular source.

Usually the inclination of the binary orbital plane is measured by modeling ellipsoidal orbital

variations of the secondary star (e.g., Orosz et al. 2009). But it is very difficult to measure

1A numerical error in Eqn. 6 of Maccarone (2002) causes an overestimate of talign by a factor ≈ 50,

compared to what is implied using their Eqn. 1.
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the orientation of the spin axis of the source. In principle, the Fe-line model used to measure

spin can constrain the inclination of the inner disk (Reynolds & Nowak 2003) which is aligned

to the spin axis via the Bardeen-Petterson effect. Presently, however, this approach is not

yet robust because simplifications inherent in the models result in a degeneracy between the

inclination angle and the ionization state of iron over the disk. The prospects are good that

more advanced Fe-line models will eventually yield reliable estimates of inner-disk inclination,

which can be compared to the inclination of the orbital plane. At present, the most direct

way to determine the inclination of the inner disk is by model jet ejecta, which are presumed

to be aligned with the black hole’s spin axis. For the case of symmetric jets, see the review

by Mirabel & Rodŕıguez (1999).

Based upon the motion of relativistic jets produced during X-ray outbursts, two systems

are good candidates for hosting misaligned black holes: GRO J1655–40 and SAX 1819–25252.

During outburst, the former produced a sequence of jet plasmons which showed correlation

with a series of X-ray flares. These ejecta were tracked by two groups, Hjellming & Rupen

(1995) and Tingay et al. (1995), who reported proper motions of 54 and 45, and 65 ± 5

mas/d, respectively. While the precise jet trajectories are ambiguous, the motions adopted

in Hjellming & Rupen (1995) indicate that the black hole is nominally tilted by ≈ 15◦ relative

to the binary orbit, and at 85◦ to the line of sight. The case is less certain for SAX 1819–

2525, in which just one observation of extended radio emission was taken and associated

with an X-ray outburst hours earlier, implying highly superluminal motion: βapp > 10c, and

a misalignment > 50◦ (Orosz et al. 2001; Hjellming et al. 2000). The radio plasmon rapidly

faded and was not seen upon repeated observations days later, and Chaty et al. (2003)

have speculated that the radio jet may have been launched several days preceding the X-ray

flaring, while the source was optically active. Motivated by these ostensible misalignments,

a pair of warped disk models have been developed which illustrate the time-evolution of the

alignment and disk in each system by Martin et al. (2008b) on GRO J1655–40 and Martin

et al. (2008a) on SAX 1819–2525.

Compared to these two systems and the other Galactic microquasars, the remarkable

jet ejections in J1550 stand out. For one, the jet ejecta become bright at very late time after

outburst; this long timeframe is also the reason that the jets appear at a very large physical

separation from one another. In fact, when considering a dimensionless scale by which to

measure the size of black-hole jets (R/M), the J1550 jets may well be the largest observed

from any back hole (Hao & Zhang 2009, and see Heinz 2002), and would correspond to a jet

radius of 1–10 Mpc from a supermassive black hole.

2Another system, SS 433 shows evidence of a tilted spin axis, but whether its compact primary is a black

hole or a neutron star is uncertain.
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In a previous study, Wang et al. (2003) modeled the light curve and dynamical evolution

of J1550’s ballistic jets using the same model we employ. Namely, one of an expanding jet

interacting with the interstellar medium (ISM). They applied this model to X-ray observa-

tions of J1550’s eastern jet and thereby determined that the gas density around J1550 is

unusually low and also that the X-ray emission is attributable to a reverse shock propagat-

ing back through the jet front. Later, their work was extended to include the western jet

by Hao & Zhang (2009). Both groups focused their modeling efforts on the properties of

the environment around J1550. Accordingly, Wang et al. (2003) and Hao & Zhang (2009)

adopted nominal and fixed values for the jet inclination (50◦ and 68◦ respectively), initial

Lorentz factor (3), and jet energy (3.6×1044 erg). With these assumptions, both groups

found evidence for the existence of a low density cavity around J1550 (modeled in more

detail by Hao & Zhang), and a possible asymmetry in the ambient gas in the eastern and

western fronts.

In this Paper, we adopt a similar procedure but with the specific aim of testing the

alignment of the black hole with its binary plane. Because the light curves are mostly

useful to constrain the electron and magnetic field distributions in the jet lobes, and also

because the emission mechanisms may be variable and multiple, we disregard the light-

curve data. Instead, we focus upon modeling the dynamics of the ballistic jets and carefully

deriving reliable values and error estimates for each of the parameters. Ultimately, we use our

inference about the inclination of J1550’s spin-axis to constraint its possible misalignment.

2. Data

We use archival Chandra X-ray Observatory data for eight observations of J1550 that

were obtained using the Advanced CCD Imaging Spectrometer (ACIS) between 2000 June

and 2003 October. The exposure times range from ≈ 4 − 50 ks. Pipeline processed level-2

event files3 were used to produce images of the field of J1550. When detected, images of

the eastern (approaching) jet yielded 16–40 counts and the western (receding) jet 100–400

counts; J1550 itself was always detected and yielded 60–3000 counts.

These same Chandra data were used by Hao & Zhang (2009) in their analysis of the

X-ray jets. They relied on the absolute astrometric precision of Chandra in order to derive

positions for each lobe and thereby its offset from J1550. We have reduced the astrometric

errors severalfold by directly measuring the relative separations between J1550 and the jet

lobes in each image.

3using CXC DS-7.6.10
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In order to measure the precise jet positions, which are given in Table 1, we smoothed

each image using a 1′′ Gaussian kernel and then determined the centroid of each jet lobe

using the DAOphot find routine (Stetson 1987). This procedure was used to derive initial

estimates for all the jet positions. Then, 1000 Poisson random realizations of each field were

produced, and the centroid measurements were repeated. In most cases, the positions for

a given lobe were tightly clustered about a single value, and a separation and error were

derived from this distribution. However, in the case of three faint images, the eastern jet

was dim (possibly because the emission is extended), which resulted in a broad distribution

of positions (Obs. X1, X3, and X5 in Table 1). In these cases, a Gaussian-weighted mean

was used to derive the offset by using weights wj obeying log(wj) = −1
2
(φj − φPA)2/σ2

PA.

Here, we used a fixed position angle which was measured using a coaligned, coadded frame to

be φPA ≈ 94◦.25 ± 0◦.3, consistent with the position angle determined by both Hannikainen

et al. (2009) and Corbel et al. (2002). Typically, the position errors for the eastern jet were

several tenths of an arcsec, while for the brighter western jet they were . 0.1′′.

In addition to the positions derived using the Chandra data, we include in our analysis

two radio positions (Obs. R1 and R2 in Table 1). These measurements are taken from Corbel

et al. (2002), who derived positions from observations by the Australia Telescope Compact

Array (ATCA) taken on 2000 June 1 and 2002 January 29. In the first observation, only the

eastern jet is observed, whereas in the second, the eastern jet has faded and the western jet

alone is present.

As a final constraint on our kinematic jet model, we require that the apparent separation

speed of the jets at launch match the value measured using the LBA, 65.5 ± 13.2 mas/d

Hannikainen et al. (2009). This speed and the jet positions are the sole inputs to our

principal model in § 5. However, we also consider radio intensity measurements given by

Hannikainen et al. (2009) in § 6. They report 2.29 GHz flux densities taken four and six

days after the X-ray flare with intensity ratios of SE1/SW1 = 3.55 and SE2/SW2 = 2.40,

respectively; we assume uncertainties of 25% for both measurements. We also adopt their

measurements of the radio spectral index, α1 = −0.43 and α2 = −0.21, taken from flux

densities measured with the ACTA at 4.8 and 8.6 GHz. The spectral index measurements

and corresponding LBA images, while not strictly simultaneous, were obtained within several

hours of each other.

3. The Jet Model

The development of our kinematic jet model follows Hao & Zhang (2009) and Wang

et al. (2003). The model we use has been designed to describe gamma-ray bursts, but it
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is broadly applicable to the general case of a relativistic, adiabatically expanding jet and

accompanying shock wave. To begin, we consider a pair of symmetric jets, each launched

with a kinetic energy E0 and Lorentz factor Γ0. As the jets expand into their environments,

they entrain material from the surrounding medium and dissipate their kinetic energy at the

shock front, heating the ISM. We neglect radiative losses, and assume the jets are confined

and evolve adiabatically. The jets obey

E0 = (Γ − 1)M0c
2 + σ(Γ2

sh − 1)mswc2, (2)

where Γ is the instantaneous bulk Lorentz factor of the jet, M0 is the mass of the jet ejecta,

and Γsh is the Lorentz factor at the shock front. The mass of the entrained material, msw,

that has been swept up by the shock is approximately msw = Θ2mpnπR3/3, where Θ and R

are respectively the half opening angle and the distance the jet has traveled. The numerical

factor σ varies from ≈ 0.35 for ultrarelativistic shocks to ≈ 0.73 in the nonrelativistic limit

(Wang et al. 2003; Blandford & McKee 1976). Following Huang et al. (1999), we adopt a

simple numerical scaling to interpolate between the two regimes: σ = 0.73 − 0.38β, (β =
√

1 − 1/Γ2).

At the shock front, the jump condition relates the bulk Lorentz factor in the jet to that

of the shocked gas:

Γ2
sh =

(Γ + 1)[γ̂(Γ − 1) + 1]2

γ̂(2 − γ̂)(Γ − 1) + 2
. (3)

The adiabatic index γ̂ varies between 4/3 and 5/3, which are respectively its ultrarelativistic

and nonrelativistic limits. We interpolate between these regimes via γ̂ = (4Γ+1)/3Γ (Huang

et al. 1999; Wang et al. 2003; Hao & Zhang 2009).

The apparent (projected) motions of the approaching and receding jets are given by

µa =
β c sinθ

D(1 − β cosθ)
, µr =

β c sinθ

D(1 + β cosθ)
. (4)

As we show in § 5, this simplistic model fails to describe the data. Motivated by the

results of Hao & Zhang and Wang et al., we have generalized Eqn. 2 to allow for the jet

to propagate freely through a low-density cavity before shocking against the much higher

density ISM. We also allow for the size of this cavity to differ from east to west, and also

for the presence of intrinsic asymmetry in either the two jet lobes or in the gas density from

east to west. Eqn. 2 becomes:

ηE0 = (Γ − 1)ηM0c
2 + σ(Γ2

sh − 1)mswc2, (5)

where the entrained mass is now

msw =
Θ2mpnπ

3
×

{

R3, R ≤ ζRcr,

(ζRcr)
3 + δ[R3 − (ζRcr)

3], R > ζRcr

(6)
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where Rcr and δ are respectively the radius of the cavity centered on J1550 and the density

jump at the cavity boundary. The asymmetry in the jet (or alternatively the ambient

medium) and the cavity are described by the parameters η and ζ , respectively. Both of these

parameters are fixed to unity for the eastern jet, but may be allowed to vary for the western

jet.

While solving Eqns. 5 and 6 for the observed separation on the sky, each solution

uses a subset of eight possible parameters: θ, Γ0, D, Rcr, δ, η, ζ , and lastly the “effective

energy” Ẽ. There is a degeneracy in the model in which the energy term is inseparable

from the density and opening angle; the model treats the combined quantity E0/nΘ2 as a

single parameter. To make physical sense of this, we assume that the density of the ISM is

a standard nISM = 1 cm−3 so that n = 1/δ cm−3 and adopt Θ = 1◦ (Kaaret et al. 2003).

Predicated upon our assumed values for nISM and Θ, the energy is taken to be Ẽ.

Finally, in going beyond our principal model to consider the ratio of jet intensities, the

case of symmetric lobes at equal separation is given by (Mirabel & Rodŕıguez 1999):

Sa

Sr
=

(

1 + β cos θ

1 − β cos θ

)k−α

, (7)

where sub-indexes a and r refer to the approaching and receding lobes and k ranges from

2 for continuous jets to 3 for discrete ejecta. Since our observations provide snapshots at a

fixed time but unequal separation, we allow for additional time dependence in the brightness

of the jets, and parameterize their evolution as a power-law in time from the jets’ rest frame.

Then, Eqn. 7 becomes

SE

SW

=

[

ΓW (1 + βW cos θ)

ΓE(1 − βE cos θ)

]k−α−∆

ηq, (8)

where ∆ is a fit parameter and for positive values describes a decay in brightness with time.

The effect of asymmetry is captured by q, which can range from -1 to 1.5 depending on

whether E0, n, or Θ is the source of asymmetry.

4. Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a powerful statistical technique by which ran-

dom samples may be drawn from a posterior distribution of unknown form. In our case, the

posterior distribution is the probability of our model parameters, given the data. MCMC

algorithms perform a “guided walk” through parameter space such that, after an initial

burn-in phase, the chain directly reproduces the likelihood surface for the model. The chain

itself is simply an ensemble of points in parameter space with the special property that the
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density of chain elements within a finite volume of parameter space is proportional to the

likelihood surface integrated over that volume. MCMC has several advantages over tra-

ditional gridded-search algorithms when the number of parameters is large. For example,

the search time with MCMC scales approximately linearly with the number of parameters

rather than exponentially (Mart́ınez et al. 2009). Furthermore, the ergodic property of the

Markov Chain guarantees (asymptotically) that the chain will fully explore parameter space,

ensuring that a true global optimization is found.

We implement a particular class of the algorithm known as random-walk MCMC. In

this approach, a sequence of transitions from the current parameter values are proposed and

incrementally accepted or rejected. These transitions are effected via a “jump” distribu-

tion J(x∗|xn) (e.g., a multivariate Gaussian) that defines a probability of transitioning to a

new state x∗ given the current state xn. The transition from xn to x∗ is governed by the

Metropolis-Hastings algorithm (Hastings 1970) and is determined by the ratio of probability

densities r

r =
p(x∗|y)J(xn|x

∗)

p(xn|y)J(x∗|xn)
, (9)

where y refers to the data, and p(a|b) should be read in the usual way as the probability of

a given b. The term p(x∗|y)/p(xn|y) in the equation above gives the likelihood ratio of the

two states, while the remaining term corrects for bias introduced by the jump distribution

density at each state. The state of the next link in the chain, xn+1, is then chosen according

to

xn+1 =

{

x∗, with probability min[r, 1],

xn, otherwise.
(10)

The likelihood ratio appearing in Eqn. 9 is calculated by evaluating the χ2 for each state

while taking into account the prior ℘ on all of the model parameters. In this case, the priors

are introduced independently so that ℘ ≡

N
∏

k=1

℘k, where N is the number of parameters and

℘k gives the prior for parameter k. Omitting additive constants, the log-likelihood for state

x is

log (p(x|y)) = −
1

2

[

χ2(x) − 2 log (℘(x))
]

. (11)

4.1. MCMC in Practice

As Eqn. 11 makes apparent, the prior acts as a penalty to χ2, and for the special case

that a prior is “flat” (i.e., independent of x), one recovers the usual least-squares formula. It

is also worth noting that because the prior only enters into the MCMC chain generation as a
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ratio (Eqn. 9) the scaling of the prior is arbitrary. We introduce a new term for this penalized

χ2, χ2
℘. While generally only differences in χ2

℘ are used to assess the relative performance of

a model, unless stating otherwise, we will choose a normalization for the prior so that the

penalty term is zero at the best fit. (The best fit is at the minimum χ2
℘, which is also the

maximum likelihood.)

Priors can be viewed as a means of accounting for the likelihood of obtaining a certain

parameter value without regard to how well the data are fitted. For example, we adopt a

split-Gaussian prior on the distance because it has been previously measured using optical

and near-infrared photometry (see § 1, also Orosz et al. 2011). For the asymmetric terms,

we adopt a flat prior on the logarithmic deviation from unity, i.e., ℘η ∝ min[1/η, η] (where

we use the same expression for ℘ζ). Stated differently, we consider a term implying a 10-fold

asymmetry to be a priori one tenth as likely as one that is symmetric. We adopt flat priors

on inclination θ and Rcr and flat priors on the log-values of scale parameters (i.e., the jet

energy, Γ0 and δ).

While it is optimal to use an unbounded parameter space in performing MCMC sam-

pling, it is also sensible to set physically meaningful constraints on the parameters (e.g.,

Γ0 > 1). To achieve both, we have transformed each parameter using a logit function to

map a parameter range [zmin, zmax] onto an infinite scale:

logit(t) ≡ zmin +
zmax − zmin

1 + e−t
, −∞ < t < ∞, (12)

for a parameter, z. The parameter ranges are listed in Table 2.

We initialize the chain with starting guesses for both the model parameters and also

for the step sizes used to set a multivariate-normal jump distribution. However, this initial

guess for the jump function almost always results in poor sampling of the parameter space

and computation times that are often prohibitively long. This situation can be remedied,

however, by running a sequence of “training” iterations. These training iterations provide

increasingly precise measurements of the likelihood structure, produce refined estimates for

the parameter covariance matrix Σ, and ultimately result in the samples converging upon

the maximum likelihood. For each training chain, the covariance matrix is used to define a

jump function as a t−distribution with 4 degrees of freedom. (The t−distribution is similar

to a Gaussian, but it has broader wings to improve mixing.) These refinements iteratively

sculpt the jump function until it is an excellent approximation to the posterior covariance

matrix, thereby greatly increasing the efficiency of the MCMC process.

The training phase was employed for a minimum of 15 iterations, each of which generated

2000 links. Training terminated either after 25 cycles were completed or when the chain
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attained an acceptance fraction (“movement”) between 24%− 37%4. Each run produced an

acceptance fraction of at least 20%.

Upon completing its training cycle, 8 chains were generated and run in parallel using

the trained jump function, each to a length of 110 thousand elements. Seven of the starting

positions were chosen using a dispersed 10 Σ covariance about the final position in the

training sequence, and the eighth was started directly from the end location reached by the

training sequence. The initial 10 thousand elements of each chain were rejected because

they were generated during a “burn-in” phase in which the chains relax toward the desired

stationary distribution. Our final results are based on a total of 8×105 MCMC samples.

Convergence of the MCMC run is assessed using the criterion of Gelman & Rubin (1992),

which measures the ratio of the inter-chain variance to the intra-chain variance: the closeness

of this criterion to unity is the measure of convergence.

In Figure 1 we plot a trace of our parallel runs over time for inclination in our adopted

model (see § 5). In the bottom panel, we show the Gelman & Rubin convergence diagnostic

of the chain over time. Typically, a convergence threshold R̂ ≤ 1.1 or 1.2 is used (see, e.g.,

Verde et al. 2003). Larger values of R̂ suggest that either the parameter space is insufficiently

sampled or that the chains are not fully evolved. We obtain R̂ < 1.01 for θ, our parameter

of interest.

5. Results

To begin with, we first consider and rule out two simple models. We start by assuming

the simplest case, which we refer to as Model S1, in which the jets are symmetric and

propagating through a uniform medium (i.e., η = ζ = δ = 1 and Rcr = 0). The best fit

achieved by this simple model yields an unacceptable χ2
℘/ν = 68. The strong curvature

implied by the data at late times is simply incompatible with the unabated motion early on.

Next, we introduce a symmetric cavity centered on J1550 (δ and Rcr are free fit parameters).

This formulation, Model S2, attains χ2
℘/ν = 41, a significant improvement but still far from

an acceptable fit. Results from both models are shown in Table 2.

By introducing a modest ∼ 25% asymmetry in the size of the jet cavities (Model AC),

we are able to produce a successful fit to the data; this model is shown in Figure 2 with

goodness value χ2
℘/ν = 1.65. In this case, ζ is a free fit parameter, while η is still fixed to

4The optimal movement was set at ≈ 32%. This value ranges from ≈ 23% for an infinite-dimensional

problem to ≈ 45% for a univariate problem (Gelman et al. 1996).
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Table 1. J1550 Jet Positions

Obs. ∆ta Eastern Lobe (arcsec) Western Lobe (arcsec)

R1 620.5 21.9±0.3b · · ·

X1 628.5 21.5±0.5 · · ·

X2 701.4 22.7±0.2 · · ·

X3 722.2 23.7±0.5 · · ·

R2 1227.5 · · · 22.6±0.3b

X4 1268.8 28.5±0.2 22.78±0.05

X5 1368.5 · · · 23.19±0.07

X6 1466.0 29.6±0.6 23.44±0.10

X7 1591.3 · · · 23.76±0.10

X8 1859.6 · · · 24.4 ±0.2

aTime since the jets were launched, equal to MJD - 51076.0.

bACTA position from (Corbel et al. 2002).

     
 

60

65

70

75

80

85

θ 
(d

eg
re

es
)

2•104 4•104 6•104 8•104 1•105

 Link Number

1.0

1.1

1.2

1.3

1.4

R̂

Fig. 1.— top: The trace of θ for Model AC of § 5. Eight parallel chains are used, and for

each the initial 104 elements are thrown out for the burn-in phase. bottom: The convergence

of the chain over time. The chains reach convergence quickly, which is indicative of good

mixing.



– 13 –

unity. The modeling results are summarized in Table 2 and marginal MCMC distributions

for each parameter are shown in Figure 3. We find that the cavity surrounding J1550

extends out to 0.6 pc (eastern side) and 0.5 pc (western side) from the black hole, and that

at the cavity boundary there is a density contrast ∼ 100. This implies that both jets freely

expanded with very low mass-loading for the first ≈2–3 years. But because the western cavity

is significantly smaller, the receding jet reached the dense ISM earlier (from the frame of

J1550) and therefore decelerated more rapidly than its eastern counterpart as it accumulated

mass.

The MCMC results constrain the launching speed of the jets to values greater than

Γ0 = 1.6 (3σ), but at large Γ0, the data provides essentially no constraint and so the

distribution closely tracks the prior (Fig. 3). The distance is likewise only weakly informed by

the data and mostly follows the prior distribution. The remaining parameters are determined

by the data and have only minor dependence on the prior. The jet angle is measured as

θ ≈ 71◦, and shows moderate correlation with the other fit parameters. The strongest two

of these correlations are with ζ , and with Rcr, shown in Figure 4.

We adopt Model AC as the most likely explanation for J1550’s jet evolution, with which

we can test the degree to which J1550’s spin (jet) and the binary orbital axes are misaligned.

Using a Gaussian distribution of the binary inclination, i = 74.7 ± 3.◦8 from Orosz et al.

(2011), we compute the difference between the binary plane and the jet axis. From the

distribution of tilt estimates, we find (Fig. 5) no evidence for misalignment; the results are

consistent with θ = i, and we place 1σ and 90% upper limits on the degree of misalignment

at 8◦ and 12◦, respectively.

6. Radio Intensities and Asymmetric Jets

Motivated by the alternating intensity ratios in the jets of GRO J1655–40, wherein the

approaching and receding sides may each be the dominant source of synchrotron emission

at different times (Hjellming & Rupen 1995; Mirabel & Rodŕıguez 1999), we now consider

the radio intensity measurements of J1550’s jets with two aims: We wish to identify any

intrinsic asymmetry in the jet and at the same time check the consistency of our dynamical

result. To this end, we first re-fit our adopted kinematic model again assuming asymmetric

cavities, but we now introduce the two radio intensity measurements and the additional free

parameter ∆ to describe the decay rate of the jet emission over time; we refer to this as

Model RAC. The modeling results for Model RAC are nearly the same as for Model AC,

with the jet inclination settling at a slightly larger value. The fit is quite good: χ2
℘/ν = 1.38,

and ∆ is positive (∆ ≈ 1 − 5).
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Fig. 2.— The best-fitting model and fit residuals for the eastern jet (black) and western

jet (blue). The cavity locations are marked by dashed horizontal lines, indicating that the

western wall (for the receding jet) is smaller than that for the eastern jet.

Table 2. Kinematic Model Settings and Fit Results

Parameter Range Prior Shapea Model S1 Model S2 Model AC

θ (degrees) 0 − 89.99 F 53.9 ± 0.7 58.16 ± 1.7 70.8+7.3
−4.5

Γ0 1 − 1000 LF 210+390
−160 50+320

−43 36+300
−32

Ẽ (1045 erg) 10−10 − 1010 LF 91.8+9.6
−6.7 74+18

−14 5.9+3.6
−2.3

D (kpc) 3 − 7b N(4.38+0.58
−0.41) 3.07 ± 0.06 4.30+0.29

−0.23 4.48+0.43
−0.34

Rcr (pc) 0 − 5 LF · · · 0.46 ± 0.03 0.63 ± 0.06

δ 0.1 − 104 LF · · · 940+4900
−790 104+70

−34

ζ 10−2 − 102 LF (max[ζ ,ζ−1]) · · · · · · 0.78 ± 0.03

min(χ2
℘/ν) · · · · · · 67.66 (541.3/8) 41.22 (247.3/6) 1.65 (8.25/5)

min(χ2/ν) · · · · · · 67.61 40.94 1.22

Note. — The values quoted are the median parameter and symmetric quantiles found with the

Markov Chain run (as opposed to the single best fit).

aF is flat, LF is log-flat, and N is a normal distribution.

bThe lower bound on distance is taken from Hannikainen et al. (2009), and the upper is derived

using D ≤ c√
µaµr

(Mirabel & Rodŕıguez 1999).
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Fig. 3.— MCMC results for Model AC. Probability densities are shown for each parameter

to an arbitrary scale. An overlay for each prior shape is drawn as a blue dashed line. Note

that the only two parameters which closely track the prior function are the system distance

and Γ0 (at high values only). Otherwise, the prior contributes minimally to the parameter

distribution.
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Fig. 5.— The misalignment estimate derived from the MCMC run of Model AC. The results

show that no misalignment is likely for J1550; 1σ and 90% upper limits are measured at

≈ 8◦ and 12◦ respectively.
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To now test the viability of an asymmetry in the jets rather than asymmetry in the

cavities, we set ζ = 1 and free η. We refer to this model as Model RAJ (Model AJ for

the kinematic formulation in which no radio intensities are used). In addition to ∆, an

additional parameter q is used to describe the effect of the asymmetry on the radio jets. The

results for fitting with both models are reported in Table 3. Model RAJ is equally successful

at fitting the data, but achieves a worse χ2
℘/ν because it comes with one additional free

parameter. The model implies a higher inclination θ ≈ 82◦, and also implies a very large

intrinsic asymmetry, a factor ∼ 15(= 1/η) . In addition, the fact that q is near 0 implies

that the asymmetry measure is attributable to a difference in the ambient gas density and

is not as likely to be an asymmetry in either the jet energy or opening angle.

From consideration of the goodness-of-fit to the data including radio intensity measure-

ments, we find that there is no reason to prefer an asymmetric cavity model over one in

which the jets (or ambient density) is asymmetric between east and west. However, a more

direct comparison is possible by returning to the kinematic models and deriving a compar-

ison between Model AC and Model AJ. In this case, both models have seven parameters,

and also an identical structure for the prior, with one asymmetry term replaced for another.

Because we attribute equal likelihood to both forms of asymmetry, we can use the penalty

normalization from our nominal model, Model AC, and apply it to Model AJ. These results

are given in Table 3, and from the difference in χ2
℘: min(χ2

℘,AJ)−min(χ2
℘,AC) = 3.6, we find

that Model AJ is less likely at the 90% level of confidence.

We conclude that unlike the jets of GRO J1655 where asymmetries of some kind must

produce reversing intensity variations, J1550 is consistent with symmetry in the eastern and

western jets. Instead, we attribute asymmetry in the system to the presence of a lopsided

evacuated cavity encasing the black hole.

7. Discussion

Heinz (2002) have proposed that based upon large-scale motions ∼ 0.1 pc observed

from a handful of microquasars, that black-hole binaries many generally inhabit low density

environments, or alternatively that they reside in bubbles filled with low density gas. Our

work, as well as the previous studies of J1550, lend strong credence to this suggestion for

J1550. Heinz proposes that the cavity may be an approximately spherical remnant of the

progenitor supernova explosion, or alternatively that the cavity may be a collimated channel

maintained by e.g., a kinetic outflow like an accretion disk wind or persistent jet (also, see

Hao & Zhang 2009). For the latter explanation to hold true, the activity should be near-

continuous, or else there must be very little proper motion in the system to prevent the
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Table 3. Additional Kinematic Model Results

Parameter Model AJ Model RAC Model RAJ

θ (degrees) 86.2+2.4
−3.1 72.8+7.4

−5.4 81.9+5.1
−6.8

Γ0 22+270
−19 37+390

−33 1.41+0.33
−0.14

Ẽ (erg) 213+83
−65 6.1+3.8

−2.3 80+30
−34

D (kpc) 4.83 ± 0.36 4.49+0.43
−0.35 3.57+0.50

−0.44

Rcr (pc) 0.46 ± 0.05 0.63 ± 0.06 0.35+0.04
−0.05

δ 510+1700
−410 98+57

−30 740+3300
−590

ζ · · · 0.78 ± 0.03 · · ·

ηa 0.065 ± 0.014 · · · 0.068+0.016
−0.013

∆b · · · 1.9+3.2
−1.1 1.8+5.3

−6.5

qb · · · · · · −0.28+0.52
−0.35

min(χ2
℘/ν) 2.37 (11.83/5)c 1.38 (8.31/6) 1.43 (7.16/5)

min(χ2/ν) 1.11 1.11 1.31

Note. — The values quoted are the median parameter and

symmetric quantiles found with the Markov Chain run (as op-

posed to the single best fit).

aThe form of the prior for ζ and η are identical (see Tab. 2).

bA flat prior is used for both ∆ and q. The former is allowed

to take values between [-10,10] and the latter is constrained to

the range [-1,2].

cThe penalty normalization for Model AJ is derived originally

for Model AC.
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cavity structure migrating substantially.

We further remark upon a notable feature of our model: X-ray emission is detected

only after jets reach scale of the western cavity (Fig. 2). However, the eastern jet is detected

in X-rays before reaching the eastern cavity wall. It may be that the cavities are naturally

truncated by proper motion, to approximately the scale we observe, or else it may be that

the cavity walls themselves are porous, and that filaments of matter breach the cavity and

produce X-ray emission in advance of the stronger shocks at the cavity boundary.

The total enthalpy of these cavities is of order 1040−1042 erg, a scale easily maintained by

steady or frequent injections from small-scale jets while the system is in a hard or quiescent

state (Remillard & McClintock 2006). The asymmetry is unlikely to be attributed to a

large-scale proper motion of J1550 because of the tremendous speed implied (∼ 0.1c), but

instead is easily explained by a comparably moderate (∼ 20%) pressure or density gradient

across the pc-scales spanned by the jets, in a dense region of the Galaxy.

We note that while we have identified asymmetric cavities, the direction of the asymme-

try is opposite that measured by Hao & Zhang (2009). We attribute this difference to several

divergences in our analyses from theirs: First, they pre-assumed values for θ, Ẽ, and Γ0 and

also used a large asymmetry term (equivalent to η−1 ≈ 30), large enough that their ζ = 1.4

would have compensated in the other direction. We were able to substantially improve the

data set, and in our analysis found no need for an extreme asymmetry at all.

Lastly, we find that the total energy associated with the jets 2 × Ẽ ≈ 1046 erg, is

consistent with the mass accreted onto J1550 during its day-long ejection event being diverted

into fueling the impulsive jets: Because J1550 has a∗ ≈ 0.5, and was near its Eddington rate

during the X-ray flare (Steiner et al. 2011), the rate of mass flowing through the disk would

have been ṁ ∼ 1019 g s−1, providing an accumulated ∼ 1024 g. Allowing that this is all

subject to an order-of-magnitude uncertainty, the accreted mass and energy of the jet are

well matched for Γ0 ≈ 10, well within the range of our measurements. This implies that

much or all of the accreted mass was used to power the jet, or alternatively that the energy

in the jet was comparable to that accreted during the launching event.

8. Conclusion

Building upon work by Hao & Zhang (2009) and Wang, Dai, & Lu (2003), we have

modeled the kinematic motion of the ballistic jets of J1550 using Chandra and radio images

in order to determine the degree of alignment between the spin-axis (that of the jets) and

the binary orbit. We find that the spin axis is highly inclined, θ > 65◦, and is consistent
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with either zero or minor tilt (< 8◦) with respect to the binary orbital plane.
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MNRAS, 343, 169

Corbel, S., Fender, R. P., Tzioumis, A. K., Tomsick, J. A., Orosz, J. A., Miller, J. M.,

Wijnands, R., & Kaaret, P. 2002, Science, 298, 196

Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729

Fragos, T., Tremmel, M., Rantsiou, E., & Belczynski, K. 2010, ArXiv e-prints

Gelman, A., Roberts, G., & Gilks, W. 1996, in Bayesian Statistics, ed. J. M. Bernado et al.,

Vol. 5 (OUP), 599

Gelman, A., & Rubin, D. 1992, Statistical Science, 7, 457

Hannikainen, D. C., et al. 2009, MNRAS, 397, 569

Hao, J. F., & Zhang, S. N. 2009, ApJ, 702, 1648

Hastings, W. 1970, Biometrika, 97

Heinz, S. 2002, A&A, 388, L40

Hjellming, R. M., & Rupen, M. P. 1995, Nature, 375, 464

Hjellming, R. M., et al. 2000, ApJ, 544, 977

Huang, Y. F., Dai, Z. G., & Lu, T. 1999, MNRAS, 309, 513

Kaaret, P., Corbel, S., Tomsick, J. A., Fender, R., Miller, J. M., Orosz, J. A., Tzioumis,

A. K., & Wijnands, R. 2003, ApJ, 582, 945



– 21 –

King, A. R., Lubow, S. H., Ogilvie, G. I., & Pringle, J. E. 2005, MNRAS, 363, 49

Lodato, G., & Pringle, J. E. 2006, MNRAS, 368, 1196

Maccarone, T. J. 2002, MNRAS, 336, 1371

Martin, R. G., Pringle, J. E., & Tout, C. A. 2009, MNRAS, 400, 383

Martin, R. G., Reis, R. C., & Pringle, J. E. 2008a, MNRAS, 391, L15

Martin, R. G., Tout, C. A., & Pringle, J. E. 2008b, MNRAS, 387, 188
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