INDEX NOTATION

A. Three Types of Physical Quantities: Scalars, Vectors, and Tensors

Many problems in engineering and applied mathematics can be conveniently solved
by a notational method known as vector analysis. Vector operators are defined,
and a useful set of vector identities is obtained. However, in problems of
theoretical physics, the methods of vector analysis become very restrictive, and
a more powerful mathematics is required. In order to develop this mathematics
we must be much more explicit in our definition of the properties of a vector.

A physicist bases his definition of a scalar, a vector, and a tensor upon the
transformation properties of the quantity; that is, the behavior of the quantity
as it undergoes a change of basis or representation (coordinates), where both the
original and final bases span the space containing the quantity. Let us consider
a set of orthogonal basis vectors (x7, X9, X ) in conflguratlon space. Let us
then transform to a new set of basis vectors (x1 ,x2 »x3'). Let the two sets
be connected by relationships of the form
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To insure that the primed basis also form an orthogonal set, it is necessary and
sufficient to require that the matrix of transformation coefficients obey the
relation (cf. equation 4-15 of Goldstein's Classical Mechanics)

EE; ajgaim = 1 if 2 =m
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We are now ready to define the quantities of physics by means of their trans-
formation properties, in terms of the basis transformation coefficients. Let S
denote some scalar quantity, V denote some vector quantity, T denote some tensor
quantity, and let the argument q represent all variables which are connected to the
quantity through the laws of physics. Primes denote quantities measured in the
transformed system and unprimes quantities measured in the untransformed system.
We now define three types of physical quantites:

Scalar transformation S'(q') = S(q)
Vector transformation vi'@q") = :g:ai&VQ(q)
. | | -
Tensor transformation T, j (q") = z z 12 im Zm(q)

With these definitions it can be seen that a quantlty can be a scalar under
one particular type of transformation, and at the same time be a vector under
a different type of transformation. We can also see that many of the quantities
which we have naively thought of as scalars, such as energy, temperature (which
is really a mean kinetic energy), and time, remain scalar under only the most
trivial types of transformations. Similarly the cross—product is often referred
to as a vector, which it most certainly is not; it is an antisymmetric tensor,
under transformations which invert the coordinates,

We will now attempt to formulate these quantities in a notation which is
convenient. Schemes of index notation vary somewhat both from author to author
and from problem to problem, but we have found the following scheme to be
extremely flexible and concise in a large variety of classes of problems.



B. Rules of the Game

Rule #1 Denote a component of an indexed quantity by a roman letter index.
Treat all quantities in terms of one of its components.

Rule #2 Denote the summation of a quantity over an index by a greek letter
dummy index (thus suppressing the summation sign). Such a dummy

index can appear upon only one side of any equation, so it can be
arbitrarily named and renamed.

Rule #3 Define the Kronecker Delta Tensor:

=1 if i = j
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Rule #4 Define the Levi-Civita Tensor Density

€1k = 1 if ijk is an even permutation of 123
= -1 if ijk is an odd permutation of 123
= 0 if any two (or all three) of the indices

ijk are equal.
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Useful Identities:

The Kronecker Delta, summed over its indices, is equal to the dimensionality
of the space

Gaa = N, the number of coordinates spanning the space
Products of Levi-Civita Tensors can be simplified using the relation
Eijk €i4m = 6j2 Skm ~ 6jm S1a

which can be verified by careful inspection.

C. Formulation of Vector Analysis in This Notation

Dot Product of two vectors:

-
A*B = AB
o o

Cross Product of two vectors:

(AxB)i = EiaBAuBP
Gradient of a scalar:
(Vs)i =
3xi
Divergence of a vector:
vV o= Wy
90Xy,

Curl of a Vector:

- = 3V
(VxV) 4 = eia8—5§i
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Exercises

Show that Gij ' = ‘ aiaajBSaB

and therefore 81§ does indeed obey the tensor transformation law.

Show that, for a coordinate transformation of the form

L
x; a5 X,
with a corresponding inverse transformation
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the inverse transformation matrix is given by

-1 =
(a )Q,m - amQ‘

Show that .ii‘ = a 35
ax; LX I X

so we see that the gradient transforms like a vector.
Laplacian obeys the transformation
¥*s' %S

XKL T g dxg
so is therefore a scalar.

Proof of Various Vector Identities by Index Notation
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Show also that the



Fu (Ux¥) = Ve (@0 = V(9 + U 9V) = v (v-0)

Take the ith component
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Take the ith component
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Since o and B are both dummy indices, we may rename o as 8 and B as a
without changing the result
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8. The Radius Vector

We can define a radius vector for an arbitrary number of dimensions, N. (For
ordinary xyz coordinate space, N is 3)

r2 = x x

o &
Notice that if we operate with %/bx;

2r L = Zx dX T 281« = 2X,
X &)("
Therefore
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Notice also that

ToF = 3xy ® Sax = N

We also consider the derivatives of the inverse, 1/t

A.L . d AN = "’ a_.f. = —_X_L
($F); = 'é"x—l(r) TR 7

Sr é_ﬁt
LL(JF)= 2 (—_>(_§>= IR(TH, = ax
‘;’(J EAN a*.’l r ‘_....;.z-_. —-—F’:‘;‘



Proof of Vector Integral Theorems

DIVERGENCE (Gauss) THEOREM

This theorem relates the integral of a vector divergence over a VOLUME
to the integral of the vector ever a SURFACE inclosing this volume.

[]f(‘v'-?)dv - j](?-n’«)ots

The proof becomes trivial if we write the left hand side in index notation
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STOKES THEOREM

This theorem relates the integral of a vector curl over an AREA to the
line integral of the vector around the PERIMETER of the area.

ff (?xF)-mdA = ['E-d-r‘

Writing the LHS in index notation
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