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Abstract
Recent ab initio variational calculations of radiative transition probabilities,
isotope shifts and hyperÐne structures are described in the spirit of the
EGAS tradition for plenary talks. A few simple cases are selected to make
the expose� at a level accessible to non-specialists in the Ðeld and to illus-
trate how computational atomic structure can be used in atomic spectros-
copy for testing theoretical models or experimental results, predicting
properties or interpreting them in terms of electron correlation. The e†ects
inherent in the multiconÐguration HartreeÈFock method due to its varia-
tional nature are emphasized through some simple analysis of the wave
function spatial distribution in correlation with the model used.

1. Introduction

Atomic structure calculations have always had large impact
in spectroscopy. They not only assist the spectroscopist in
the analysis of complex spectra by providing some reliable
term positions, level designations, synthesis spectra, helping
in the assignment of the observed lines, but also contribute
to the understanding of the underlying physical processes.
The identiÐcation of the dominant cascade processes to be
considered in the analysis of beamÈfoil data in order to
extract the meanlife from experimental decay curves, is
another example of assistance of atomic structure calcu-
lations to experimental spectroscopy. Ab initio calculations
can also precede observation. A well-known example is the
theoretical prediction of the stable negative Ca~ ion which
was conÐrmed experimentally. In the spectroscopy of multi-
ply excited states, reliable theoretical data such as energies,
widths, lifetimes, autoionization and radiative decay rates,
stabilization ratios are essential in the understanding of the
experimental spectra. Variational calculations provide a
possible way, among others, to face the atomic many-body
problem for predicting spectroscopic properties. In the
present paper, we select a few examples of applications,
hoping to show that these methods are very efficient and
accurate and as such, can play an important role in the
unceasing interaction between theory and experiment in
atomic spectroscopy.

2. The variational method

The multiconÐguration HartreeÈFock and DiracÈFock
methods that we are using, can be derived from the varia-
tional method [1]. For this reason, the latter is brieÑy exam-

ÈÈÈ
* Research Director the Belgian National Fund for ScientiÐc Research

(FNRS).

ined though Hartree himself used more his ““physical
intuitionÏÏ when he postulated that the central Ðeld in which
each electron is moving can be determined from the aver-
aged charge distribution of the other electrons [2].

The RayleighÈRitzÏs variation method [1, 3] consists of
viewing the expectation value of the Hamiltonian as a func-
tional mapping each state W to a real number E[W].

SHT \SW oH oWT
SW oWT

4 E[W]. (1)

The state W is an eigenstate of the Hamiltonian H if and
only if the total energy E is left unchanged for any inÐnitesi-
mal variation in the total wave function at the point W

oWT ] oW ] dWT F dE\ 0. (2)

For the ground state (or the lowest of its symmetry), the
variational method gives a minimum principle,

E0O
SW oH oWT
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, (3)

E[W] being an upper bound to the exact ground state
energy If we use the following superposition ansatzE0 .
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states the variational parameters can be determinedU
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The total energies can be found as the roots of the secular
equations

det(H
i, j [ ES

i, j) \ 0. (6)

The use of the MW(k)N eigenfunctions as a model subspace,
satisfying

SW(k) oW(l)T \ d
k, l ; SW(k) oH oW(l)T \ e

k
d
k, l ,

i.e. both orthonormality and non-interacting functions, is
very useful for the description of excited states since they
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satisfy the following bounding conditions

E
i
O e

i
#i\ 1, . . . , N (7)

known as the HylleraasÈUndheim theorem [4]. This
theorem tells us that all the approximate eigenvalues
obtained by diagonalizing the Hamiltonian in a subspace
can only be stabilized when the latter is enlarged.

3. The non-relativistic MCHF approximation

The Ðrst part of the talk is devoted to non-relativistic calcu-
lations in which we are using the non-relativistic Hamilto-
nian

H \ ;
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The atomic wave function is built as a multi-conÐguration
expansion of conÐguration state functions (CSFs)
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Each CSF arising from the conÐguration (and associated
coupling tree) is an eigenfunction of the set of spin- anda

i
orbital-angular momentum S2, L2, and inversionS

z
, L

z
operator #i) commuting among each other,(r
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][r

i
;

together with the non-relativistic Hamiltonian. The associ-
ated quantum numbers S, L , n deÐne the sym-M

S
, M

L
,

metry of the state. The CSFs are symmetry-adapted linear
combinations of Slater-determinants built on a set of one-
electron spinÈorbitals
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whose radial distributions need to be determined. ByMP
nl
N

applying the variational principle, i.e. searching for the sta-
tionarity of the expectation value with respect to any inÐni-
tesimal variation in the radial distribution one getsdP

nl
(r),

[5] the set of multi-conÐguration HartreeÈFock equations
(MCHF)
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for the unknown radial distributions These integro-P
nl
(r).

di†erential equations are coupled to each other through the
direct (Y ) and exchange (X) potentials and through the
radial orthogonality constraints within the same l subspace.
The conÐguration mixing coefficients appearing in (9)Mc

i
N

also enter in the explicit form of the potentials and can be
determined by solving the conÐguration interaction (CI)
problem for the current set of radial distributions

HC \ CE, (12)

associated with the application of the variation method to
the multiconÐguration expansion (9). The MCHF and CI
problems are solved iteratively until self-consistency is

reached for the radial distributions and for the selected CI-
eigenvector.

4. On the dependence of the one-electron orbitals

The fact that the multi-conÐguration HartreeÈFock method
that we use results from the application of the variational
method often makes the MCHF wave function solution of
the problem, strongly dependent on the energy functional
used to derive the MCHF equations. This will be illustrated
in quite di†erent situations through realistic examples,
giving us the opportunity to explain at the same time how
the MCHF method can be used for describing speciÐc
physical e†ects. The direct inÑuence of the optimization
scheme on the shape of the resulting one-electron orbitals in
MCHF variational calculations can be taken advanta-
geously for describing some speciÐc e†ect but could also
bring some undesirable (and sometimes unexpected) distor-
tion of the wave function for the property of interest. Any
user of variational methods should be aware of these facts.

A well-known simple example is the term-dependence of
the radial distributions. Let us consider the four-electron
beryllium excited conÐguration 1s22s2p from which the two
1,3Po states arise. The 0) subspace is spanned(M

L
, M

S
) \ (1,

by two Slater determinants

o 1s1s2s2p
`1 o and o 1s1s2s2p

`1 o

where the bar/unbar notation is used for specifying the
or ]1/2 spin projection and the subscript corre-m

s
\[1/2

sponds to the value. The two L2 and S2 eigenstates corre-m
l

spond to the orthogonal linear combinations

oW(3P1, 0o )T \ 1

J2
Mo 1s1s2s2p

`1 o] o 1s1s2s2p
`1 oN

oW(1P1, 0o )T \ 1

J2
Mo 1s1s2s2p

`1 o[ o 1s1s2s2p
`1 oN.

The ^ sign of the linear combination is crucial though
manifesting itself in the total energy expressions only
through the angular coefficient of the exchange G1(2s, 2p)
Slater integral involving the two open shells 2s and 2p,

E(3,1Po) \ 2I1s ] I2s ] I2p ] F0(1s, 1s) ] 2F0(1s, 2s)

[ G0(1s, 2s) ] 2F0(1s, 2p) [ 13G1(1s, 2p)

] F0(2s, 2p) < 13G1(2s, 2p).

In this one-conÐguration HartreeÈFock approximation, the
radial orbitals resulting from the two separate optimizations
di†er substantially from each other. As can be seen from
Fig. 1, the 2p radial distribution of the 1Po state is more
di†use than that of the 3Po state. The di†erence between
term-dependent and conÐguration-average results can be
regarded as higher contributions in a perturbation expan-
sion based on the latter [6]. In variational calculations
however, it would be a pity to use the 2p function arising
from the 1Po HartreeÈFock optimization (or from an
average calculation) for describing the 3Po state.

Another situation revealing a natural orbital di†erentia-
tion occurs in the two-conÐguration description of the
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Fig. 1. Term-dependence for Be 1s22s2p 3,1Po. The 2p radial distribution of
the 1Po state is more di†use than that of the 3Po state. The (common) inner
1s (no node) and 2s (one node) orbitals are also displayed on the same
Ðgure.

lowest 1Po state of beryllium that one would use for improv-
ing the HartreeÈFock approximation for this state,

oWTHF\ o 1s22s2p 1PoT ; E\ [14.394 735 a.u.

by allowing for the mixing with the close conÐguration 2p3d

oWTMCHF\ 0.975 24 o 1s22s2p 1PoT [ 0.221 16 o 1s22p3d 1PoT ;

E\ [14.411 563 a.u.

In this approach, the 2p orbital plays the double roü le of
spectroscopic and correlation orbital. If we use indeed a non-
orthogonal scheme allowing the two 2p orbitals to be a
priori di†erent, we get the following wave function and cor-
responding total energy

oWTMCHF\ 0.971 59 o 1s22s2p 1PoT [ 0.236 65 o 1s22p@3d 1PoT ;

E\ [14.418 786 a.u.

with a large energy stabilization e†ect relatively to the
above orthogonal description. Figure 2 beautifully illus-
trates the di†erent shapes of the 2p and 2p@ orbitals, the Ðrst
describing the spectroscopic state 2s2p 1Po while the second,
together with the 3d orbital, optimize the correlation
interaction.

A third example of the ““variational principle in actionÏÏ is
given by the analysis of the correlation orbitals in the pair
correlation picture. Let us consider the ground state of
beryllium which is described by the best single Slater
determinant

oWTHF\ o 1s22s2 1ST ; E\ [14.573 023 a.u.

in the HartreeÈFock approximation. Taking the n \ 4
orbital active set made of all possible orbitals
[0 O lO (n [ 1)] up to n \ 4, i.e.

M1s, 2s, 2p, . . . , 3d, 4s, 4p, 4d, 4fN

the valence correlation wave function is described by con-
sidering all possible excitations of the valence electron pair

Fig. 2. The non-orthogonal approach for Be M1s22s2p ] 1s22p@3d 1PoN : the
2p orbital describes the spectroscopic state 2s2p 1Po while the 2p@ orbital
together with 3d, optimize the correlation interaction. The 2s orbital (one
node) is also displayed.

(2s2) ] (nln@l)

oWTV \ o 1s22s2 1ST ] ;
nln{l

a
nln{l o 1s2nln@l 1ST ;

E\ [14.618 990 a.u.

The coreÈvalence correlation wave function is obtained by
““promotingÏÏ one core electron together with one valence
electron

oWTCV \ o 1s22s2 1ST ] ;
nln{l

b
nln{l o 1s2snln@l 1ST ;

E\ [14.578 782 a.u.

The core correlation MCHF calculation takes into account
the correlatin within the core,

oWTC\ o 1s22s2 1ST ] ;
nln{l

c
nln{l o 2s2nln@l 1ST ;

E\ [14.614 398 a.u.

Each of the above sums represents correlation between a
particular pair of electrons, namely (2s, 2s) for valence corre-
lation, (1s, 2s) for coreÈvalence, and (1s, 1s) for core corre-
lation. For this reason the sums are referred to as ““pair
correlation functionsÏÏ. In the present case there is one pair
correlation function for each type of correlation, but in
more complex situations, each type of correlation may
involve many di†erent pair correlation functions. The
dependence of the orbitals on the type of correlation con-
sidered is illustrated by the sequence of Fig. 3(a)È(c) which
reveal the collapse of correlation orbitals when going from a
valence- to a core-correlation calculation. Unfortunately,
correlation e†ects are not additive and interference e†ects
do occur through multiple excitations. This example only
shows that it is indeed possible to target a given type of
correlation by modelling the multiconÐguration expansion.
However, the resulting set of radial distributions is so well-
tailored thanks to the ““variational principle in actionÏÏ that
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Fig. 3. (a)È(c) Collapse of the correlation orbitals from valence, coreÈ
valence and core correlation MCHF calculations of Be 1s22s2 1S. The two
thick solid lines correspond to the spectroscopic 1s (no node) and 2s (one
node) orbitals. The other lines represent the radial distributions of the
correlation orbitals of the n \ 4 active set.

it quickly becomes inappropriate to represent another type
of correlation. In our four-electron example, it should be
clear that using core-correlation orbitals for describing

valence correlation is hopeless. The situation becomes obvi-
ously worse when considering larger systems, with the
space-extension of the atom being on a par with the increas-
ing number of electrons.

5. Some applications of the Active Space Method
5.1. Allowed transitions in L i I, Na I and Be I

The active space method consists of generating CSF lists by
electron excitation from the reference conÐguration to an
active set of orbitals (AS). The latter can be increased in a
systematic way, allowing the convergence of the property to
be carefully studied. The ““complete active spaceÏÏ (CAS) is
spanned by all CSFs of a particular symmetry which can be
generated from a given active set of orbitals. For instance,
the n \ 3 CAS space describing a three-electron atom or ion
and resulting from the active set M1s, 2s, 2p, 3s, 3p, 3dN con-
tains 27 CSFs of 2S symmetry and even parity,

M1s22s, 1s2s(1S)3s, 1s2s(3S)3s, . . . , 3s3d2(1S), 3p2(1D)3d 2SN.

A Ðrst illustration of the active space method is given by
the study of the radiative transition probability of the 2sÈ2p
resonance line of lithium using independently optimized
CAS expansions [7]. The total energy and number of con-
Ðguration state functions (NCSF) are reported in Table I for
increasing active sets. The active set is speciÐed in all the
tables by the principal quantum number value n. The nota-
tion 9k indicates that the l-restriction (k-elec-l O lmax \ 7
tron) is used. The oscillator strength can be then monitored
as a function of the orbital active set speciÐed by the
maximum principal quantum number. Figure 4 shows the
convergence of the length and velocity forms of the oscil-
lator strengths to each other, but also to the highly accurate
results of Yan and Drake [8] who used three-electron Hyl-
leraas wave functions of the type

W(r1, r2 , r3) \A ;
t

;
kt

a
t, kt Ut, kt(at

, b
t
, c

t
)

] (angular function)(spin function)

with

U
t, kt(at

, b
t
, c

t
) \ r1j1r2j2r3j3r12j12r23j23r31j31 e~atr1~btr2~ctr3.

Table I. CASÈMCHF calculations for 1s22s 2S and
1s22p 2Po in L i I (from ref. [7]). T otal energies (E) and
number of conÐguration states (NSCF) for di†erent active sets
(AS)

1s22s 2S 1s22p 2Po

AS E (a.u.) NCSF E (a.u.) NCSF

HF [7.4327269 1 [7.3650697 1
2 [7.4545653 4 [7.3801230 5
3 [7.4731843 27 [7.4045877 44
4 [7.4762030 110 [7.4078510 205
5 [7.4771599 338 [7.4091670 690
6 [7.4775797 866 [7.4096440 1880
7 [7.4777724 1948 [7.4098569 4424
8 [7.4778745 3974 [7.4099656 9319
9k [7.4779244 7240 [7.4100181 17330

10k [7.4779508 12054 [7.4100460 29261
11k [7.4779657 18724 [7.4100616 45916
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Fig. 4. Convergence of the length and velocity forms of the oscillator
strengths (gf ) for 2s 2SÈ2p 2Po in Li I as a function of the orbital active set
speciÐed by the principal quantum number n. The converged value corre-
spond to the inÐnite nuclear mass result of Yan andgf

l
\ gf

v
\ 1.493 914

Drake [8].

denotes a sextuple of integer powers andk
t

j1, j2 , j3 , j12 , j23
and the index t labels di†erent set of nonlinear param-j31

eters In their variational approach, the inter-Ma
t
, b

t
, c

t
N.

electronic distances appear explicitly and a complete
optimization is performed with respect to all the nonlinear
parameters. This representation gives extremely accurate
wave functions and properties, as proven by the impressive
convergence of length and velocity forms (for inÐnite
nuclear mass)

flength \ 0.746 957 2(10) ; fvelocity \ 0.746 957 1(54)

bringing a deÐnitive conÐrmation of all the previous varia-
tional calculations [8]. The problem of the longstanding dis-
agreement between theory and observation [7, 9] has been
solved by new beam-gas-dye laser spectroscopy measure-
ments of Volz and Schmoranzer [10] which are conÐrmed
by Schmitt et alÏs work at the present EGAS meeting with a
higher precision [11] and by the photoassociative spectros-
copy measurement of McAlexander et al. with extremely
small error bars [12].

The resonance line of sodium also su†ered for a long time
from a systematic disagreement between theory and experi-
ment [7, 9]. As for Li I, the last experimental values from
beam-gas-laser spectroscopy [10, 13] or from high precision
linewidth measurement of laser-cooled atoms [14] are in
excellent agreement with the most recent ab initio varia-
tional calculations using the active space MCHF method [7,
15]. This happy ending for both Li I and Na I should not
incite us to pass the recent paper by Curtis et al. [18] in
silence. From an analysis of the e†ect of a time-dependent
distorsion term in the intensity decay law

I(t)\ I(0) exp
A
[ t

q
k

B
] Cf (t),

they indeed concluded that ““deviations from the validity of
the exponential law that are too small to be directly
detected could lead to inaccuracies in the value of the
extracted meanlives that are signiÐcant at this level of preci-
sion.ÏÏ

The size of a CAS expansion grows dramatically with the
number of electrons for a given orbital active set and it is
well known that many conÐgurations have very small
expansion coefficients, contributing little to the total energy
or to the studied property [19]. Di†erent strategies can be
used to keep the size of the MCHF and CI expansions man-
ageable. Four-electron systems are very useful from a peda-
gogical point of view for explaining such approaches. In
Table II are reported the sizes of di†erent CSF expansions
describing the 1s22s2p 1Po of berylium-like ions for the
n \ 9 orbital active set

M1s, 2s, 2p, . . . , 9s, 9p, 9d, . . . , 9lN.

A valence-correlation (V) model would keep the 1s shell
inactive. A calculation which considers coreÈvalence (CV)
excitations would keep one of the four electrons in the 1s
orbital while a CAS expansion would include all types of
excitations taking the coreÈcorrelation (C) into account. As
can be seen from the number of CSFs, the size of the multi-
conÐguration expansion grows rapidly. By specifying that at
least two orbitals have principal quantum numbers n O m, it
is possible to reduce considerably the sizes of the MCHF
expansions comparatively to the CAS wave function, hoping
to keep the major physical e†ects, i.e. all the valence corre-
lation with the dominant coreÈvalence and coreÈexcitations.
One can evaluate the e†ect of the constraints imposed by
following the property for di†erent ““limited populationÏÏ
(LP) thresholds m, the case associated to them\ nmax
orbital active set restoring the original CAS expansion. Such
an example is given in Table III for the oscillator strength of
the resonance line of Be I for the largest active sets [20].

Table II. Size of MCHF expansions for 1s22s2p 1Po using
the n \ 9 orbital active set for the valence (V ), coreÈvalence
(CV ) and core (C) correlation models. For the latter, di†erent
““limited populationÏÏ (L P) constraints are used for generating
the conÐguration expansion (see text)

Model Constraints NCSF

V 1s2nln@l@ È 232
CV] V 1snln@l@nAlA È 17 826
C] CV] V nln@l@nAlAnÓlÓ È (CAS) 751 736

min 2 (n O 3) 25 102
min 2 (n O 4) 84 667

Table III. SDT QÈL PÈMCHF gf-values of 2s2 1SÈ2s2p 1Po
in Be I (from ref. [20]). T ransition energy (*E), length (gf

l
)

and velocity oscillator strengths, for a given active set(gf
v
)

(AS) and associated limited population constraint (see text
and footnote), with the corresponding numbers of conÐgu-
ration state functions (NCSF)

AS NCSF (1S)/(1Po) *E (a.u.) gf
l

gf
v

8a 6865/16298 0.1943140 1.37550 1.37605
8b 21055/53400 0.1941996 1.37476 1.37604
9a 10417/25102 0.1941834 1.37519 1.37594
9b 33298/84667 0.1940675 1.37445 1.37589
recommended [20] 1.375 (2)

a min. 2 electrons with n O 3 (MCHF).
b min. 2 electrons with n O 4 (CI).
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Single, double, triple and quadruple (SDTQ) excitations
have been included using the LP constraint ““minimum two
electrons with n O 3ÏÏ for the MCHF calculations. The LP-
threshold m is increased from 3 to 4 in subsequent CI calcu-
lations. Figure 5 illustrates the smooth convergence of the
oscillator strengths calculated in the length and velocity for-
malisms. The accuracy of the Ðnal recommended value
1.375(2) is estimated from the analysis of the convergence
trends. These calculations, together with similar work on
B II [21] and with a detailed comparison with other varia-
tional calculations [22, 23], revealed that the isoelectronic
smoothing of beamÈfoil data [24, 25] produced line
strengths deÐnitely too low for the neutral end of the
sequence and that the accuracy of previous variational Hyl-
leraas calculations [26] was overestimated. The reader is
referred to the original references [20, 23] for more details.

Another strategy commonly used for limiting the rapid
increase in the size of the wave function expansion is the
multi-reference MCHF (or CI) approach. The concept is
rather easy to understand. Pair-correlation functions are
obtained through single and double replacements (SD) from
the di†erent pairs of electrons in a reference set. The latter
usually contains the main correlation contributors. A clas-
sical example is the beryllium ground state for which the
reference set can be deÐned by the ““near-degeneracyÏÏ
Layzer complex [27]

M1s22s2] 1s22p2 1SN.

Using the n \ 3 orbital active set for generating the SD-
expansions from the mono-reference 1s22s2 1S, one gets a
multiconÐguration expansion of 19 CSFs. Using the same
orbital active set, the SD expansion obtained from the
above two-conÐguration reference set contains 37 CSFs. A
comparison of the two lists shows that the (37 [ 19)\ 18
““extraÏÏ CSFs are triple or quadruple excitations with
respect to the 1s22s2 component. So, the SD-multireference
approach is a way of taking the e†ect of higher excitations
into account.

This method has been used for a systematic study of the
2s2 1SÈ2s3p 1Po transition in the beryllium sequence

Fig. 5. Convergence of the length and velocity forms of the oscillator
strengths (gf ) for 2s2 1SÈ2s2p 1Po in Be I as a function of the orbital active
set.

(4O ZO 10) [28] using the two following reference sets

1s2M2s2, 2p2N 1S and 1s2M2s2p, 2s3p, 2p3s, 2p3dN 1Po.

Neutral Be I is a difficult case due to extensive cancellations
in the calculation of the electric dipole transition element.
Table IV shows how the transition data converge for the
three models of correlation. The notation ““rmÏÏ designates
that the relatistic-shift (““rÏÏ) and mass-polarization (““mÏÏ) cor-
rections have been included by a rediagonalization of the
interaction matrix. The di†erence in length and velocity
results is clearly reduced when going beyond the valence
(outer) correlation model. Though the full-correlation calcu-
lations have not completely converged, they can be easily
extrapolated. The agreement with the calculations of Chung
and Zhu [29] and can be con-(gf

l
\ 0.009 14 gf

v
\ 0.009 07)

sidered as excellent in comparison with earlier theories that
di†ered by factors 2È3.

5.2. Isotope shifts in B I
An introduction to isotope shifts in atomic spectra can be
found in King [30]. For the present paper, we only need to
remember the e†ect of the separation of the centre of mass
coordinates for a N-electron atom [31]. Besides the normal
mass shift (NMS) correction which can be calculated exactly
from the observed transition energy, the speciÐc mass shift
(SMS) can be calculated as the Ðrst order correction of the
polarization term

Esms\ [SW o
1
M

;
i:j

N
$

i
Æ $

j
oWT 4

1
M

Ssms ,

for both levels involved in a transition.

Table IV. T ransition energies (*E), length line strengths (S
l
),

and oscillator strengths for length and for velocity(gf
l

gf
vformalisms) for the (2s2 1SÈ2s3p 1Po) transition of Be I, using

di†erent active sets (AS) and correlation models (from ref.
[28])

AS *E (a.u.) S
l
(a.u.) gf

l
/gf

v

Outer Correlation
3 60 219 0.105 682 0.019 331/0.021 702
4 60 151 0.076 661 0.014 007/0.016 349
5 60 141 0.071 330 0.013 031/0.015 418
6 60 151 0.069 579 0.012 711/0.015 245

CoreÈvalence and Outer Correlation
5 60 298 0.058 227 0.010 665/0.010 401
6 60 246 0.052 872 0.009 676/0.009 483
7 60 241 0.051 224 0.009 373/0.009 286
8i 60 237 0.050 524 0.009 245/0.009 175
9i 60 236 0.050 196 0.009 185/0.009 141

10i 60 235 0.050 097 0.009 166/0.009 143
10ir 60 243 0.054 685 0.009 235/0.009 462

Full Correlation
6 60 279.4 0.057 889 0.010 600/0.010 261
7 60 200.5 0.052 610 0.009 620/0.009 480
8i 60 181.3 0.050 634 0.009 256/0.009 093
9i 60 181.2 0.050 029 0.009 145/0.008 974

10i 60 181.6 0.049 286 0.009 009/0.008 883
11i 60 181.5 0.048 856 0.008 931/0.008 834
11ir 60 190.6 0.049 248 0.009 004/0.008 901
11irm 60 189.8 0.049 133 0.008 983/0.008 878
<
Extrap. 60 181.5 0.008 826/0.008 777
Extrap.(rm) 60 189.8 0.008 878/0.008 821

Estimated gf 0.008 85(5)
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Table V presents the level speciÐc mass shifts for the iso-
topic pair 4He/3He of the S and Po states arising from con-
Ðgurations 1s2l and 1s3l (l\ 0, 1). These results reported by
King [31] have been derived from the accurate Hylleraas
calculations of Accad et al. [32]. The table shows that the
SMS are much larger for the Po states than for the S states
and that they have opposite signs for the 1Po and 3Po states.
This behaviour can be understood qualitatively from a
rather simple analysis. Considering the symmetric (]) and
antisymmetric ([) spatial parts of the wave functions for
the singlet and triplet states respectively,

W
B

\ 1

J2
[1s(1)nl(2)^ nl(1)1s(2)],

the ^ sign di†erentiating the two spin symmetries is reÑec-
ted in the expectation value of the SMS operator

SSsmsTB
\ [SW

B
o$1 Æ $2 oW

B
T \ ^13[J1(1s, nl)]2 d

l, 1
where J1(1s, nl) is the so-called Vinti integral [33]. This,
combined with the highly selective Kronecker delta for the
one-electron matrix element, explains the above obser-
vations. However, the one-conÐguration approximation is
not the entire story. The SMS of the S states are non-zero
and those of the 1Po and 3Po states are not identical in
absolute value. The expectation value of the speciÐc mass
shift operator is indeed highly sensitive to correlation e†ects,
as we will illustrate for the isotope shifts of the
1s22s22p 2PoÈ1s22s23s 2S and 1s22s22p 2PoÈ1s22s2p2 2D
transitions for the 11h10B isotope pair [34].

In a Ðrst step, SD-multireference MCHF expansions (SDÈ
MRÈMCHF) are generated by considering all single- and
double-excitations (SD) from the following reference sets

M1s22s22p, 1s22p3 2PoN,

M1s22s23s, 1s22p23s, 1s22s2p2 2SN,

M1s22s2p2, 1s22s23d 2DN.

The active set of orbitals is increased up to n \ 9k. Triple-
and quadruple-excitations (TQ) from the same multi-
reference complexes to systematic larger active sets are
included afterwards through a series of conÐguration inter-
action calculations (SDTQÈMRÈCI) using the most elabo-
rate (n \ 9k) MCHF radial distributions. These CSF list
extensions are speciÐed by using the (SD[x] 0 TQ[y])
notation which represents the union (0) of the two CSF
sets generated by allowing, from the MR set, single-/double-
(SD) and triple-/quadruple- (TQ) excitations to the n \ x
and n \ y orbital active sets respectively. The (mass-inde-
pendent) level SMS expectation values are monitored for the
1s22s22p 2Po state in Table VI, when improving the wave
function. The di†erence of the speciÐc mass shift parameters
which governs the transition SMS for 1s22s22p 2PoÈ

Table V. L evel speciÐc mass shifts (in GHz) of 1snl 1,3L for
the isotopic pair 4He/3He (from ref. [30])

l\ 0 l\ 1

ConÐguration 1S 3S 1Po 3Po

1s2l 2.804 2.196 13.586 [19.053
1s3l 0.78 0.56 4.293 [5.420
1s4l 0.32 0.219 1.846 [2.229

Table VI. SpeciÐc mass shift expectation values and(S
sms

)
total energies (E) for 1s22s22p 2Po in B I from SDÈMRÈ
MCHF and SDT QÈMRÈCI calculations using the M1s22s22p,
1s22p3N reference set (from ref. [34]), for di†erent active sets
(AS) with the corresponding number of conÐguration state
functions (NSCF)

AS Ssms (a.u.) E (a.u.) NCSF

SDÈMRÈMCHF
HF [0.40486 [24.529061 1
3 0.29390 [24.621891 129
4 0.24038 [24.638480 520
5 0.25662 [24.645478 1301
6 0.25443 [24.648728 2584
7 0.25327 [24.650290 4479
8 0.25212 [24.651009 7096
9k 0.25156 [24.651372 10436

SDTQÈMRÈCI
SD[9k] 0 TQ[3] 0.26482 [24.652034 10711
SD[9k] 0 TQ[4] 0.27018 [24.652687 16284
SD[9k] 0 TQ[5] 0.27159 [24.652928 49134
SD[9k] 0 TQ[6] 0.27185 [24.653056 99014

1s22s23s 2S is reported in Table VII with the corresponding
transition energies. The transition isotope shifts are reported
in Table VIII and compared with the Many-Body Pertur-
bation Theory (MBPT) results [36] and with the Fourier
Transform Spectroscopy (FTS) measurements [37] for the
two transitions. The 2È4% agreement between theory and
experiment is very satisfactory, taking into account that
strong destructive interference between NMS and SMS
occurs for the 2p 2PoÈ3s 2S isotope shift.

5.3. HyperÐne structures in Na I and N I
HyperÐne structures are interesting properties for testing the
quality of variational wave functions. The theory of hyper-
Ðne interaction can be found in [38]. The tensorial form of

Table VII. T he di†erence of the speciÐc mass shift param-
eters and total energies (*E) for the 1s22s22p 2PoÈ(*S

sms
)

1s22s23s 2S transition in B I. Also shown are the results from a
SDÈMRÈCI calculation where relativistic shift operators have
been added to the non-relativistic Hamiltonian ( from ref.
[34])

AS *Ssms (a.u.) *E (cm~1)

SDÈMRÈMCHF
HF 0.404 86 38 835
3 0.346 30 40 199
4 0.387 62 39 914
5 0.369 09 39 816
6 0.348 56 39 675
7 0.349 70 39 739
8 0.349 70 39 756
9k 0.349 76 39 756

SDÈMRÈCI rel. shift
9k 39 738

SDTQÈMRÈCI
SD[9k] 0 TQ[3] 0.336 77 39 899
SD[9k] 0 TQ[4] 0.336 59 39 973
SD[9k] 0 TQ[5] 0.336 14 40 002
SD[9k] 0 TQ[6] 0.336 29 40 017
Exp. [35] 40 039.65
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Table VIII. T he 11BÈ10B isotope shifts in the 1s22s22p 2PoÈ1s22s23s 2S and
1s22s22p 2PoÈ1s22s2p2 2D transitions ( from ref. [34]). Contributions from the normal
mass shift (nms) and speciÐc mass shift (sms) are separately given

Transition nms (cm~1) sms (cm~1) total (cm~1) Method

1s22s22p 2PoÈ1s22s23s 2S 0.1986 [0.4409 [0.2423 HF [34]
0.1986 [0.3661 [0.1676 SDTQÈMRÈCI [34]
0.1986 [0.293 [0.0944 MBPT [36]

[0.174^ 0.005 FTS [37]

1s22s22p 2PoÈ1s22s2p2 2D 0.2374 0.3613 0.5987 HF [34]
0.2374 0.3399 0.5773 SDTQÈMRÈCI [34]

0.569^ 0.005 FTS [37]

the hyperÐne operators and their matrix elements are given
in details by Jo� nsson et al. [39].

23Na has a nuclear spin I\ 3/2 and a nuclear magnetic
dipole moment k \ 2.217 655 6 The hyperÐne inter-kN .
action couples the nuclear I and electronic J angular
momenta and leads to a splitting from which the magnetic
dipole and electric quadrupole interaction constantsA

J
B

J
can be extracted. We used the active space MCHF/CI
method for calculating these parameters for the and3s 2S1@2

levels [15]. The wave functions have been deter-3p 2P1@2, 3@2o
mined through SD-MCHF calculations with the restriction
that at most single excitations were allowed from the core.
Additional layers of orbitals were optimized for describing
the coreÈcore e†ects, observing the collapse of these corre-
lation orbitals as described in Section 4. Three-particle
e†ects included through CI calculations were found to be of
importance for the hyperÐne interaction constants. The Ðnal
values are compared in Table IX with the most accurate
experimental values, with the couple cluster (CCSD), rela-
tivistic many-body perturbation (RMBPT) and Ðnite-
element multiconÐguration HartreeÈFock (FE-MCHF)
theories. The MCHF/CI calculated constants all agree to
within less than 0.7% with the experimental values. Com-
bining the B/Q calculated value with the experimental coup-
ling constant, the quadrupole moment Q\ 105.6 mb has
been obtained, supporting Sundholm and OlsenÏs conclu-
sion [40] that the uncertainty of muonic values may be
larger than expected.

Large-scale MCHF calculations have been performed for
N I an O I [48]. For the nitrogen ground1s22s22p3 4S3@2o

state, with a total orbital angular momentum equal to zero
(L \ 0, J \ S), only the Fermi contact term contributes to
the hyperÐne interaction constant which is given (in MHz)
by

A
J
\ 95.410 67

Ak
I

I
BAge

6
B 1

J
ac

where

ac\ ScL S(M
L
\ L )(M

S
\ S) o

] ;
i/1

N
8nd3(r

i
)s
zi

o cL S(M
L
\ L )(M

S
\ S)T

and is the electron spin g-factor. Thege \ 2.002 319 3
isotope 14N has a nuclear spin I\ 1 with a magnetic
dipole moment k \ 0.403 761 00(6) In the HartreeÈFockkN .
approximation

U(1s22s22p3 4So) \ o 1s1s2s2s2p~12p0 2p
`1o,

the Fermi contact parameter is strictly zero. In this case,ac
the dominating contributions to the hyperÐne interaction
come from the spin-polarization of the closed 1s and 2s
shells due to the Coulomb exchange interaction with the
open shells. Core electrons with the same spin orientation
than the 2p electrons are attracted to each other. Two s
electrons in the same shell do not have the same density at
the nucleus, leading to a net contact interaction [6].

An elegant single-electron picture has been proposed by
Chipman [49, 50] who suggested to use a compact MCHF
variational calculation including the major polarization

Table IX. T he interaction constants and for and states inA
J

B
J

3s 2S1@2 3p 2P1@2, 3@2o
23Na compared with values from other calculations and from experiment ( from ref. [15])

3p 2Po

A1@2 (MHz) A3@2 (MHz) B3@2/Q (MHz/b)
3s 2S

Method A1@2 (MHz) Reference

HF 626.2 63.66 12.72 15.91 This work [15]
CI 870.3 93.16 18.74 25.67 This work [15]
CIa 882.2 94.04 18.80 25.79 This work [15]

CCSDa 883.8 93.02 18.318 26.14 [41]
RMBPTb 860.9 91.40 19.80 [42]
RMBPTc 884.5 [43]
FEÈMCHFd 25.45 [40]
Experiment 885.813 064 4 (5) 94.42 (19) 18.69 (6) [44È46]

18.64 (6) [47]

a Corrected for relativistic e†ects using the ratio between DF and HF values.
b Third-order calculation.
c All order calculation.
d Corrected for relativistic e†ects using results from quasirelativistic CI calculations.
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e†ects

U0\ 1s22s22p3,

U1\ 1ss**[3S]2s22p3[4So],

U2\ 1s22ss*[3S]2p3[4So],

U3\ 1sd**[3D]2s22p3[2Do],

U4\ 1s22sd*[3D]2p3[2Do].

in which the s* and s** orbitals are orthogonal to 1s and 2s,
but are non-orthogonal to each other. Similarly, d* and d**
are two d orbitals, not necessarily orthogonal. Such a non-
orthogonal calculation can be done with the ““MCHF
Atomic Structure PackageÏÏ (MCHF–ASP) [51] now avail-
able from several sites, as described in [52]. The variation
principle tailors the correlation orbitals according to the
above CSF expansion for describing the 1s and 2s spin- and
orbital-polarization e†ects. Figure 6 shows the radial dis-
tributions of the s* and s** polarization orbitals. Their
shape can be understood by the fact that they can be viewed
as representing an entire class of excitations in the conven-
tional conÐguration interaction picture.

The resulting hyperÐne constant A\ 7.576 MHz, to be
compared with the experimental value A\ 10.4509 MHz of
Hirsch et al. [53], demonstrates that, in comparison to the
zero HartreeÈFock result, the single-excitation picture cap-
tures polarization e†ects. However, it is not enough and we
need to consider the ““trueÏÏ correlation e†ects as well. To
describe the major correlation e†ects in the pair-correlation
approximation, all single and double (SD) excitations were
allowed from the HartreeÈFock reference conÐguration to
the active set of orbitals. The orbital set was then increased
in a systematic way, allowing the convergence of the expec-
tation values to be studied. Following the notation used in
quantum chemistry, the active set is characterized by the
number of orbitals of a certain symmetry. The set 3s2p1d
for example, contains three s-orbitals, two p-orbitals and
one d-orbital. In Table X the hyperÐne coupling constant,
the total energy and the total number of conÐgurations are

Fig. 6. The single-electron picture. The three thick solid lines correspond
to 1s, 2s and 2p orbitals. The shape of the s* and s** polarization orbitals
can be understood by the fact that they can be viewed as representing an
entire class of excitations in the conventional conÐguration interaction
picture (see text).

Table X. HyperÐne structure constants (A) and total energies
(E) for 1s22s22p3 4So in 14N ( from ref. [48]), for di†erent
active sets (AS) with the corresponding number of conÐgu-
ration state functions (NCSF)

SDÈMCHF

AS A3@2 (MHz) E (a.u.) NCSF

HF 0.0 [54.400934 1
3s2p1d/3s 8.632 [54.517526 179
4s3p2d1f/3s 5.267 [54.558194 438
5s4p3d2f1g/3s 4.924 [54.571488 889
6s5p4d3f2g/3s 5.592 [54.576998 1538
7s6p5d4f3g/3s 5.534 [54.579219 2385
8s7p6d5f4g/3s 5.555 [54.580233 3430
9s8p7d6f5g/3s 5.595 [54.580674 4673
10s9p8d7f5g/3s 5.663 [54.580892 5884

SDT- and SDTQÈCI

SDM10s9p8d7f5g/3sN 0 SDT

3s2p1d/3s 7.488 [54.582559 6511
4s3p2d1f/3s 9.278 È È
5s4p3d2f1g/3s 9.861 [54.584457 20792
6s5p4d3f1g/3s 10.169 [54.584689 39307
7s6p5d3f1g/3s 10.234 [54.584771 58878

SDM10s9p8d7f5g/3sN 0 SDTM7s6p5d3f1g/3sN 0 SDTQ

4s3p2d1f/3s 10.395 [54.585927 79373
Experiment [53] 10.45

shown as a function of the increasing active set of orbitals.
The three s-orbitals, preceded by a slash in the table, have
been added and optimized by allowing single excitations
only for describing speciÐcally the spin-polarization e†ects.

To investigate the inÑuence of higher order correlation
e†ects a number of conÐguration interaction calculations
were performed in which CSFs generated by triple (T) and
quadruple (Q) excitations from the reference conÐguration
to the increasing active set were added to the largest expan-
sion from the preceding MCHF calculation. As seen from
the table the inclusion of CSFs generated by T excitations
has a drastic e†ect on the hyperÐne coupling constant,
which is increased by as much as 80%. The e†ect of the
included CSFs generated by Q excitations is in comparison
very small and conÐgurations obtained by higher excita-
tions are believed to be small and have been neglected. The
Ðnal result is in rather good agreement with experiment
[53].

6. The relativistic corrections

The EGAS ““logoÏÏ that we all have printed on our badge
could well have been designed for representing the three for-
bidden radiative processes connecting the three Ðne struc-
ture levels and the ground state of2s2p 3P

J/2, 1, 0o 2s2 1S0
Be-like ions. The origin of the 2È0 line is a magnetic quad-
rupole process (M2). The 1È0 spin-forbidden electric dipole
transition (E1]) is induced by the relativistic singletÈtriplet
mixing while the 0È0 ““strictly forbiddenÏÏ line can be
induced through hyperÐne J-mixing for isotopes having a
non-zero nuclear spin.

As can be seen from Fig. 7 showing the combined spec-
trum of the planetary nebulae LMC N122 and SMC N2
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Fig. 7. The combined spectrum of the planetary nebulae LMC N122 and
SMC N2 obtained by R. Clegg with the Goddard High Resolution
Spectrograph on board on the Hubble Space Telescope.

obtained by R. Clegg with the Goddard High Resolution
Spectrograph on board on the Hubble Space Telescope, the
relative intensities of the M2 and E1] C III lines are strongly
dependent on the source. Their ratio can be used for the
determination of the electron density [54, 55]. The 0È0 line
has been used very recently for measuring the 12C/13C ratio
in planetary nebulae [54] and could be very helpful in the
diagnostic of very low-density emitting plasmas [55].

One should realize that relativistic corrections need to be
included for the theoretical study of these three processes.

6.1. T he BreitÈPauli approximation
The one-electron orbital basis (10) optimized using the non-
relativistic MCHF variational approach can be used for
building the conÐguration space in which the relativistic
BreitÈPauli (BP) Hamiltonian is diagonalized. This deÐnes
the MCHF] BP method. A proper derivation of the BreitÈ
Pauli approximation is given by Moss [56]. The form of the
Ðne and non-Ðne structure operators with the relevant
matrix elements can be found in [57].

The intermediate coupling eigenvectors,

oW(SL JM
J
n)T \ ;

i
c
i
oU(a

i
S
i
L
i
JM

J
n)T (13)

resulting from the diagonalization of the BreitÈPauli Hamil-
tonian, another conÐguration interaction problem, takes
into account that J, and n are the only ““goodÏÏ quantumM

J
numbers, the operators L2 and S2 not commuting anymore
with the Ðne-structure operators.

6.2. T he MulticonÐguration DiracÈFock method
The multiconÐguration DiracÈFock (MCDF) method is the
fully relativistic counterpart to the non-relativistic MCHF
scheme. Here the Hamiltonian is given by

;
i/1

N C
ca

i
Æ p

i
] (b

i
[ 1)c2 [Z

r
i

D
] ;

i:j

N 1
r
ij
, (14)

where c is the speed of light and a and b are the Dirac
matrices. The atomic wave function is given as an expansion
over jj-coupled CSFs

oW(JM
J
n)T \ ;

i
c
i
oU(a

i
JM

J
n)T. (15)

The CSFs are in turn constructed from Slater determinants
built on the four-component Dirac orbitals

/(r) \ 1
r
A P

ni(r)sim(rü )
iQ

ni(r)s~im(rü )
B

. (16)

In the expression above i is the relativistic angular
quantum number, and are the large and smallP

ni(r) Q
ni(r)

component radial wave functions and is the spinorsim(rü )
spherical harmonic in the lsj coupling scheme

sim(rü ) \ ;
ml, ms

Sl12ml
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s
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lml
(h, r)m

ms
(p). (17)

Applying the variational condition gives, as in the non-
relativistic case, a set of coupled di†erential equations for
the radial functions together with an eigenvalue equation
for the mixing coefficients [58]. These equations are solved
to self-consistency. To avoid collapse into the negative
energy continua the large and small components of the
radial functions need to satisfy additional conditions at the
origin [59].

Once a set of radial orbitals has been obtained, relativistic
conÐguration interaction (RCI) calculations can be per-
formed. Here only the expansion coefficients of the CSFs are
determined. In the RCI calculations the transverse photon
interaction

Htrans\ [ ;
i:j
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as well as the leading QED e†ects may be included in the
Hamiltonian. The photon frequency used by the RCIu

ij
program in calculating the matrix elements of the transverse
photon interaction is taken to be the di†ence in the diagonal
Lagrange multipliers and associated with the orbitals.e

i
e
j

In general, diagonal Lagrange multipliers are approximate
electron removal energies only when orbitals are spectro-
scopic and singly occupied. Thus it is not known how well
the MCDF method can determine the full transverse
photon interaction when correlation orbitals are present.
Frequently, only the low frequency limit referred tou

ij
] 0,

as the Breit interaction, is used. It is this limit that is
approximately retained in the MCHF] BP approximation.

Fully relativistic calculations are comparatively time con-
suming. There are several reasons for this. Firstly, the
number of radial orbitals is almost twice as large as in the
corresponding non-relativistic case. Thus, the active set M3s,
3p, 3dN in an MCHF calculation becomes M3s1@2 , 3p1@2 ,

in MCDF. Since the CPU time needed3p3@2 , 3d3@2 , 3d5@2N
to construct and solve the di†erential equations depend
strongly on the number of orbitals, this increase can have
large e†ects. Secondly, the number of CSFs in the atomic
wave function expansion is larger in the relativistic case. So
does for example the n \ 4 CAS expansions for and1s22p1@2

contain 1048 CSFs whereas the corresponding1s22p3@2
MCHF expansion for 1s22p 2Po only contains 205 CSFs.

Qualitatively relativistic e†ects manifest in a contraction
so that the inner electrons move in orbits closer to the
nucleus. This then has an important secondary e†ect on
the more weakly bound relativistic outer electrons [60].
The advantage of the MCDF method compared to the
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MCHF] BP is that these e†ects are described in a
direct way through the shape of the radial orbitals. For the
MCHF] BP method the rearrangement of the electrons is
described in a less efficient way through the conÐguration
expansion coefficients. The contraction e†ects grow rapidly
with increasing nuclear charge, and eventually the non-
relativistic orbital basis used in the BreitÈPauli calculation
will be completely inadequate to describe the system.

6.3. T he spin-forbidden transition in Be-like2s2p 3P1oÈ2s2 1S0ions
The three transitions have been studied2s2p 3P

J
oÈ2s2 1S0

thoroughly along the sequence, using di†erent variational
approaches, in a joint e†ort of combining di†erent
approaches to assess the accuracy of the theoretical results.
The N IV study [61] is often cited in that sense. The C III
(1È0) intercombination line has a very long story [62] and a
lot of theoretical e†ort [63È66] has been made to under-
stand the large decay rate value measured by Kwong et al.
[67] using a radiofrequency ion trap. This theory-
experiment persistent discrepancy found a reassuring epi-
logue in the recent measurements by Doerfert et al. [62]
using the heavy-ion storage ring technique, producing a
transition probability in perfect agreement with most of the
recent variational calculations [68].

The EGAS poster presented by Tra� bert et al. [69] also
reports another successful application of the ion-storage
method for measuring the lifetime in B`,2s2p 3P1oq\ (97.65^ 1.0) ms. Two of the authors of the present pub-
lication (MG and CFF) are involved in separate works [70,
71] using both the BreitÈPauli approximation but produc-
ing rather di†erent results, q\ (103 ^ 2) ms and
q\ (97.4^ 2) ms respectively. We should remember that
the theoretical values for these highly sensitive properties
are often rescaled in the Ðnal step using the observed energy
di†erences a†ecting the transition rates. This so-called ““Ðne
tuningÏÏ procedure [72] obviously assumes the use of correct
experimental quantities. It appears that the energy3P2h0o
separation di†ers following the source. The two sets of cal-
culations would give identical results if using the same Ðne

structure interval which basically governs the strength of the
singletÈtriplet mixing. This shows that the Ðne tuning pro-
cedure works indeed quite well and that reliable meanlife
measurements with a high accuracy could be combined with
accurate theoretical line strengths to support a Ðne structure
splitting amongst others.

Intercombination transitions are treated in a very natural
way within the relativistic MCDF formalism. Contrary to
the MCHF] BP method, where the rate depends critically
on an accurate and balanced description of a number of
states belonging to di†erent L S terms, only the initial and
Ðnal states need to be accurately represented. The difficulty
with the MCDF method on the other hand is the large and
cancelling contributions to the transition matrix element.
Due to the large cancellations the convergence of the inter-
combination rate with respect to the increasing active set is
very slow. As an illustration of the MCDF method the

rate is evaluated for Si XI and FeXXIII2s2p 3P1oÈ2s2 1S0
[73]. The conÐguration expansions were obtained by allow-
ing SD-excitations with at most one excitation from 1s1@2
from, respectively, andM2s1@2 2p1@2 , 2s1@2 2p3@2N M2s1@22 ,

to the active sets. The Breit interaction has2p1@22 , 2p3@22 N
shown to be very important for this transition [74] and was
accounted for in subsequent RCI calculations. For the
largest expansion additional calculations were performed
where now also the frequency dependent part of the trans-
verse photon interaction was included in the Hamiltonian.
Finally, the leading QED e†ect (Lamb shift) was included.
The results from these calculations are shown in Table XI.
Judging from the convergence patterns the intercombination
rates (length form) are believed to be accurate to within less
than 1.5%.

6.4. T he 2s3pÈ2s2 transitions in Be-like ions
As a last example, we will illustrate the use of accurate
variational calculations in spectroscopy for testing the data-
based prediction model of Curtis et al. [75] applied to the

transitions. The systematization and pre-2s3p 1,3P1oÈ2s2 1S0
dictive parametrization of transition probabilties proposed
by Curtis and collaborators deÐnes the singletÈtriplet

Table XI. T ransition energies (*E) and rates (A) for the
intercombination transition (IC) in SiXI and2s2p 3P1oÈ2s2 1S0FeXXIII. Also shown are the length and velocity gf values for the

allowed transition. In the table [x] denotes powers(E1) 2s2p 1P1oÈ2s2 1S0of 10 ( from ref. [73])

AS *E
IC

(cm~1) A
IC
l (s~1) A

IC
v (s~1) *E

E1 gf
l

gf
v

Si XI
3 172680 3.396 [5] 3.371 [5] 332835 0.2671 0.2630
4 172533 3.514 [5] 3.608 [5] 331241 0.2660 0.2652
5 172530 3.579 [5] 3.888 [5] 330633 0.2656 0.2651
6 172536 3.606 [5] 4.013 [5] 330513 0.2656 0.2651
B(u) 172532 3.599 [5] 4.016 [5] 330508 0.2656 0.2651
QED 172176 3.577 [5] 4.008 [5] 330160 0.2653 0.2654
Exp [16] 172144 329679

FeXXIII
3 381619 5.143 [7] 4.871 [7] 758928 0.1547 0.1520
4 381368 5.223 [7] 5.128 [7] 757193 0.1544 0.1532
5 381373 5.265 [7] 5.337 [7] 756570 0.1544 0.1533
B(u) 382929 5.185 [7] 5.166 [7] 756761 0.1546 0.1533
QED 379363 5.041 [7] 5.118 [7] 753366 0.1539 0.1540
Exp [17] 379130 752502
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““mixing angleÏÏ h through the trigonometric function involv-
ing the energy level data

cot (2h)4 ^ 1

J2

G3[E(3P1)] E(1P1)[ 2E(3P0)]
2[E(3P2)[ E(3P0)]

[ 1
H
.

The ““reducedÏÏ line strengths for both the resonance and
intercombination lines deÐned from

S
if
r (res.)4 S

if
(res.)/cos2 h,

S
if
r (int.)4 S

if
(int.)/sin2 h

often can be accurately represented by the following isoelec-
tronic behaviour

Z2Sr + a ] b
Z[ c

.

The exposition of measured line strengths in the form of
reduced expressions allows to see how well the latter
conform to the above linear relationship and possibly make
predictions along an isoelectronic sequence.

The details of the MCHF] BP calculations can be found
in [28] and [76] for the allowed and spin-forbidden tran-
sition respectively. No L S mixing was included for the
ground state. For the odd parity, the only L S mixing con-
sidered [see eq. (13)] was mixing in the J \ 1 block.1,3P1o
The non-relativistic calculations have already been com-
mented for the allowed transition in Be I (see Section 5.1
and Table IV). Our study in the range of Z\ 4 [ 10 [28]
showed the importance of coreÈvalence e†ects even for
NeVII on the oscillator strength. CoreÈcore e†ects are neg-
ligible at the 0.2% level after the Ðrst few stages of ioniza-
tion. The theoretical results [28] support the use of the
semi-empirical smoothing method as proposed by Curtis et
al. for getting an improvement over experiment. The FV ion
is probably the most favourable case for which the experi-
mental transition rate A\ 39(6) ns~1 devi-2s2 1S0È2s3p 1P1o
ates substantially from the semi-empirically predicted value
(56.2) whereas the latter (with the same error bars) would be
in agreement with our variational calculations [62.02(09)].

For the spin-forbidden line, an (n, n ] 1) optimization
procedure was adopted [61] in which the orbitals with prin-
cipal quantum number On were optimized on the 3Po term,
and an extra ““layerÏÏ of orbitals optimized on 1Po is added
to the orbital set. Orbitals for the ground state were opti-
mized separately. Unlike the allowed transition, correlation
in the core has not been included. The 3Po Ðne structure
splitting, which is one of the indicators of accuracy is com-
pared in Table XII with the theoretical full-core plus corre-
lation method (FCPC) values of Zhu and Chung [77] and
experiment. In Table XIII the MCHF] BP recommended
value for each ion is compared with other theory and
experiment. Though the agreement is better with experiment
for the ion N IV, the present agreement with the semi-
empirical trend predicted by Curtis et al. [75] is encour-
aging. The Z-expansion results of Ralchenko and
Vainshtein [66] are based on perturbation theory. The
GRASP results were obtained using a fully relativistic
DiracÈCoulomb Hamiltonian with Breit corrections [80]
but only valence correlation was considered and the same
orbitals were used to describe both the initial and Ðnal
states. The CIV3 results [81] are based on non-relativistic
multiconÐguration expansions built on optimized linear

Table XII. T he Ðne-structure splitting (in2s3p 3P
J
oÈ3P0ocm~1) ( from ref. [76])

B II C III N IV O V FVI NeVII

(i) 3P1oÈ3P0o
MCHF 1.24 5.67 16.12 36.88 73.50 133.62
FCPCa 1.20 5.58 16.1 36.7 72.8 132.1
Exp.b 1.30 5.67 15.83 36.7 73 132.8
Exp.c 72

(ii) 2P2oÈ3P0o
MCHF 4.68 18.82 51.59 114.34 221.06 338.37
FCPCa 4.60 18.61 51.3 113.7 219.6 385.5
Exp.b 4.74 18.75 51.2 113.9 221 388.2
Exp.c 220

a Zhu and Chung [77].
b Bashkin and Stoner [35] ; Kelly [78].
c Engstro� m [79].

combinations of Slater-type orbitals. As expected, both
GRASP and Z-expansion results show improving trends as
the nuclear charge increases. In NeVII, the CIV3 values
su†er from an overestimate of the energy separa-3P1oÈ1P1o
tion used in the Ðnal energy level adjustment procedure.

7. Conclusions

We hope to have convinced the EGAS audience and the
reader of the present paper that the systematic active space
MCHF/MCDF variational methods, with large multi-
reference CI expansions and efficient CI-algorithms [83, 84],
can be helpful in di†erent Ðelds of spectroscopy. With
todayÏs powerful workstations, unprecedented accuracy may
be achieved for complex systems. The MCHF atomic struc-
ture package has been modiÐed for parallel execution on
workstations using the parallel virtual machine software
[85]. With this modiÐcation, MCHF calculations an order
of magnitude larger than those of only a few years ago may
now be performed. The same trend towards massively paral-
lel applications is expected for the MCDF calculations.

We have shown that the shape of the orbitals resulting
from variational calculations strongly depends on the energy
functional. This implies that the one-electron basis varies,
not only with the model used for tailoring the wave func-
tion, but also with the electronic state considered within a
given model. A corollary is that a high-quality wave func-
tion often demands orbitals optimized for the speciÐc elec-

Table XIII. T he BreitÈPauli transition rates (106 s~1) for the
transition ( from ref. [76])2s2 1S0È2s3p 3P1o

Curtis et al. [75]

Z MCHF GRASPa CIV3b Z-expc Exp. Pred.

5 0.27 (6) 0.1
6 0.50 (2) 0.520 0.4
7 3.2 (1) 1.40 3.07 4.97 3.3 (20)d 2.8
8 19.6 (4) 16.4 18.3 22.2 22.6 (4) 19
9 98.9 (9) 85.5 88.6 95.9 102 (9) 100

10 415 (4) 385 275 370 430 (60) 418

a Fritsche and Grant [80].
b Hibbert [81].
c Ralchenko and Vainshtein [66].
d Engstro� n et al. [82].
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tronic state and, for transition probabilities, it is usually not
possible to obtain an accurate description when the same
orbital set is used for two di†erent states. The biorthogonal
transformation has been implemented for tackling the one-
electron non-orthogonalities resulting from independent
optimizations of the initial and Ðnal states in the non-
relativistic [86] and relativistic [68] schemes. Alternative
procedures using Slater determinant algebra are also
explored [87, 88]. More generally, separate optimizations
are worthwhile for the calculation of interaction matrix ele-
ments in all cases of strong dependence of the one-electron
basis with the coupled states considered, whatever the inter-
action mechanism is. The possible use of the biorthogonal
transformation algorithm is currently investigated to calcu-
late the electrostatic coupling between discrete and contin-
uum wave functions in the evaluation of Fano parameters
and autoionization rates [89] and the relativistic coupling
between separately optimized L S wave functions [90] in
BreitÈPauli calculations.

Using large-scale MCHF and CI calculations it is seen
that transition probabilities, isotope shifts and hyperÐne
structures can be calculated very accurately. Higher-order
correlation e†ects beyond the pair-correlation approach are
found to be important for the systems considered and need
to be included if accurate results are wanted. For transition
probabilities, the theoretical calculations are undoubtedly
helpful, with an accuracy reaching 0.5% for the allowed
transitions. Spin-forbidden processes are more critical but
theory often procedes experiment in determining accurate
lifetimes of metastable levels. For isotope shifts, we have
shown that the ab initio calculations for light systems for
which the speciÐc mass shifts are dominant, can compete
with the accuracy of high resolution Fourier transform spec-
troscopy. The experimental accuracy is unbeatable for
hyperÐne structure parameters, at least for the ground states
for which laser resonance methods can be applied. The com-
parison theory-experiment is nevertheless interesting, the
experimental value guiding the theoretical calculation of the
electronic wave functions.

The present paper is limited to transition probabilities,
isotope shifts and hyperÐne structures but other properties
can be evaluated using similar variational approaches. The
calculation of negative ions [91], cross sections for ioniza-
tion of photo-detachment [92], oscillator strength sum rules
and dispersion coefficients [93, 94] or hyperÐne-induced
transition rates [55, 95] are exciting examples that the
reader might enjoy.

The comparison between the BreitÈPauli and DiracÈFock
approaches is important for determining their respective
advantages and limits. E†ort in this line has been made
recently [96, 97] but further work is desirable.

The recent methodological and code developments open
new perspectives. The Davidson method [83, 84] has been
implemented recently not only in the MCHF–ASP and
GRASP packages, but also in relativistic conÐguration-
interaction codes using Ðnite B-spline basis functions [98].
The impact of basis splines in theoretical atomic physics has
been evaluated recently in a topical review [99]. Among
many successful applications using these techniques, we will
point out the model-potential description of Laughlin and
Hansen [100] who obtain the ““near spectroscopic precisionÏÏ
for the valence spectrum of calcium.

The angular algebra also knows promising developments
such as the efficient approach for spin-angular integrations
in atomic structure calculations proposed by Gaigalas and
Rudzikas [101], using the quasi-spin formalism and the
reduced coefficients of fractional parentage. This method-
ology has been implemented in some codes of the
MCHF–ASP package [102].
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