Quantum statistics: Is there an effective fermion repulsion
or boson attraction?
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Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli
principle, and a corresponding effective attraction between bosons. We examine the origins and
validity of such exchange force ideas and the areas where they are highly misleading. We propose
that explanations of quantum statistics should avoid the idea of an effective force completely, and
replace it with more appropriate physical insights, some of which are suggested hemes ©
American Association of Physics Teachers.
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. INTRODUCTION WYXy Xo,t) = CLF (Xq, Xo) X — a(X; — vt +a)?

The Pauli principle states that no two fermions can have ~BOGtut=a)’]=f(x2,x1)
the same quantum numbers. The origin of this law is the X exf — a(x,—vt+a)?— B(x,+vt—a)?]},
required antisymmetry of the multi-fermion wavefunction. 1)
Most physicists have heard or read a shorthand way of ex-
pressing the Pauli principle, which says something analogoughere X, and x, are the particle coordinated,(x;,X)
to fermions being “antisocial” and bosons “gregarious.” Of- = eXflimuv(x;—xp)/%], C is a time-dependent factor, and the
ten this intuitive approach involves the statement that there ipacket width parameteesand are unequal. In reality, each

an effective repulsion between two fermions, sometimesingle-particle packet will spread with time, but we assume
called an “exchange force,” that keeps them spatially sepa'-[hat the spreading is negligible over the short time that we

rated. We inquire into the validity of this heuristic point of consider the system. At=0, the a-packet is peaked at a

view and find that the suggestion of an effective repulsiori_and moving to the right W',th velocity, Wh'l,e the S-packet
between fermions or an attraction between bosons is actualg peaked att-a and traveling to the left with the same ve-

: L city. Of course, we cannot identify which particle is in
a dangerous concept, especially for beginning Studentv</hich packet because they are indistinguishable, and each

because it often leads to an inaccurate physical interpretatiqrr]1as a probability of being in each packet.tAt the packets
and sometimes to incorrect results. We argue that th%re aszumed well separ%\ted withplittle o;/erlap P

effective injtergction interpretation of the Pauli principle At t=alv, the wave function becomes
(or Bose principle should almost always be replaced by an
alternate physical interpretation that better reveals the truer(Xq ,Xo,t) = C{f(xq,X2)exf — a(X1)?— B(X)?]
physics. 2 2

Physics comes in two parts: the precise mathematical for- ~ 0@ x)ex —a ()™= B(x) I, 2
mulation of the laws, and the conceptual interpretation of theand the direct and exchange parts have maximal overlap. The
mathematics. David Layzer has sai¢There is a peculiar wave function clearly vanishes &t=x, (at all timeg. At the
synergy between mathematics and ordinary language ... THame t=2a/v, the packets have passed through one another
two modes of discours@vords and symbo)sstimulate and and overlap very little again:
reinforce one another. Without adequate verbal support, th _ B N2 2
formulas and diagrams tend to lose their meaning; withou?(xl’xz’t)_c{f(xl’XZ)qu a(X,=a)"= fxp+a)]
formulas and diagrams, the words and phrases refuse to take —f(Xp,Xp)exd — a(x,—a)2— B(x,+a)?]}.
on new meanings.” Interpreting the meaning of wavefunc- 3)
tion symmetry or antisymmetry in a simple pedagogical rep- ) _ .
resentation is thus vitally important. However, if those wordsNoW the a-packet is peaked at a, but still moving to the
actually convey the wrong meaning of the mathematics, theyight and thep-packet is peaked at a and still moving to

must be replaced by more accurate words. We believe thape left. The packets have moved through one another unim-
this is the situation with the heuristic “effective repulsion” Peded because, after all, they represent free-particle wave
for fermions or “effective attraction” for bosons. or “ex- functions. Describing this process in terms of effective forces

change force” generally. would imply the presence of scattering and acceleration,

. which do not occur here, and would be highly misleading.
We can demonstrate there is no real force due to Fermi/ Nonetheless, the concept of effective fermion repulsion is

Bose symmetries by examining a time-dependent wavgyident in many texts, particularly in discussions of the be-
packet for two noninteracting spinless fermions. Considehayior of an ideal fermion gas, a case we explore further in
the antisymmetric wave function for one-dimensional GaussSec. II. A common usage of the repulsion idea is in the

ian wave packets, each satisfying the Sdimger equation, interpretation of the second virial coefficient of an ideal gas.
and moving toward each other: The first correction to the pressure of a classical ideal gas
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due only to statistics is positive for spinless fermions andical effects of wavefunction antisymmetry or symmetry.
negative for spinless bosons. Heésimilar to most other This concept has been with physics since the early days of
texts that treat the subject, including one authored by one ajuantum mechanics. Nevertheless, it is important to examine
us’) says, “The quantum correction that is introduced bythe usefulness of this heuristic interpretation of the math-
statistics appears as an attractive potential for Bose—Einstegmatics. As Layzer has pointed duho such interpretation
(BE) statistics and as a repulsive potential for Fermi—Diraccan carry the whole weight of the rigorous mathematical for-
(FD) statistics.” Pathri& carries the idea further, developing mulation; however, if a heuristic interpretation brings along
a mathematical expression for the effective interaction bethe baggage of subsequent misconceptions, then physicists
tween fermions or between bosons. Huaatso quotes this must be more circumspect in its use.
quantity. This expression first appeared in 1932 in an article For example, consider the following case where there is a
by Uhlenbeck and Groppérvho may well be the originators complete breakdown of the concept. Suppose two spinless
of the whole statistical interaction picture. We discuss thisfermions or bosons have a completely repulsive interparticle
formula in more detail in Sec. II. potential and impinge on one another at energies low enough
Wannief is a bit stronger in his assessment of the quantumhat there is onlys-wave scattering. As we show in Sec. Il
thermal distribution function for fermions: “The particles ex- if the scattering amplitude for distinguishable particles ,is
ert a very strong influence on each other because a partictfien the scattering amplitude for fermions vanishes identi-
occupying a state excludes the others from it. This is equivacaly, whereas it is 2 for bosons. In this case the statistical
lent to a strong repulsive force comparable to the strongesfymmetry has diminished the interaction for fermions—not
forces occurring in the problem.” LeightBromits the word  made it more repulsive—and it has enhanced the interaction
“effective” in discussing the so-called fermion interaction: fo; hosons—not made it less repulsive.
“As compared with the behavior of hypothetical but distin-  \yherever the idea of an effective force breaks ddamit
guishable particles, Bose particles exhibit an additional atyges in our wave-packet description and in theave scat-
: i ) ) Tering exampli we need to replace this interpretation with
other in space; Fermi particles, on the contrary, r_epel On%,ther heuristic interpretations that better represent the phys-
another and tend not to be found near one another in spacecg Thjs js our aim in the examples we analyze below.
Gnﬁjths has done an mteres'qng calculau_qn of the aver- In Sec. Il we examine more closely the physics that gives
age distance between two particles at positi@psand x;  ise to the idea of an effective statistical interaction between
when one is in state/, and the other injy; the two func-  quantum particles and derive the Uhlenbeck—Gropper for-
tions are orthogonal and normalized. For distinguishable paimula for the interaction. Section Il will take the opposite
ticles with wave functiony,(x;) #,(X,), the mean-square point of view, and present cases where the idea is highly
separation is misleading and where the effect is actually opposite the usual
((X1=%2) D dis= (X2 a+ (XD — 2(x)a(X)p 4) implication. Section IV summarizes our conclusions.

where(x);=[dx X ¢i(x)|?. For spinless fermions the wave
function must be antisymmetrized, and for bosons symmeH. EXAMPLES OF THE STATISTICAL
trized, giving INTERACTION

1 N There are several contexts where the idea of a statistical
V= 5[%(&) Pp(X2) = ha(X2) Yp(X1) ], (3 interaction arises naturally, and seems to imply an effective
force. The virial correction to the pressure of an ideal gas is

where the upper sign is for bosons and the lower for fermi-most likely the origin of this idea of effective interaction.
ons. From this form it is easy to compute the correspondinghe physics of white dwarf stars is another classic example

mean-square separation as of “Fermi repulsion.” The diatomic hydrogen atom is bound
o2y N2 — 2 in the electron singlet state, while the triplet is unbound,
((Xg=X2)%) = ((X1=X2)*) g+ 2|(X*) ap 6 Which is often used as an example of the effective repulsion

where(X).,=[dx xi (X) ,(x). Thus he finds that bosons between like-spin electrons due to the Paul principle. When
tend to be closer together and fermions farther apart whefv0 rare gas atoms approach one another, there is an expo-
compared to distinguishable particles. Griffiths commentdiential repulsion between the atoms, which often is ex-
that, “The system behaves as though there were a ‘force dilained by the electron statistical repulsion. Similarly, when
attraction’ between identical bosons, pulling them closer toirapped bosons condense, they collapse to a smaller region in
gether, and a ‘force of repulsion’ between identical fermionshe center of the trap, which gives the impression of an ef-
pushing them apart. We call it an exchange force, anhoug[fp_ctlve boson stat!st|cal attraction. In each of the_se cases we
it's not really a force at al—no physical agency is pushingwnl show that relying on the intuitive idea of Pauli repulsion
on the particles; rather it is a purely a geometrical conse® Bose attraction may hinder understanding of the basic
quence of the symmetrization requirement.” This wordingPhenomena. Alternative explanations are provided.

shows more care than the works cited above and is thus less Virial expansion A real gas has an equation of state that
likely to be misinterpreted. However, the term “force” has differs from that of an ideal classical gas. For high tempera-
explicit meaning for physicists. It implies a push or pull, ture T and low densityn of the gas, the pressufe can be
along with its associated acceleration, deflection, scatteringyritten

etc. Are these elements properly associated with the ex- p_ K T(1+nB(T 7
change force? If not, then the term should be replaced by sl (™), 0
words that convey more accurate connotations. wherekg is Boltzmann’s constant aril is the second virial

Our intention is not to be critical of authors for using the coefficient. Equatior{7) gives the lowest terms of the virial
words “repulsion” and “attraction” in describing the statis- expansion, a series in powersrof3, where\ is the thermal
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wavelength, given byx=\h%(27mkgT) for particles of 4
massm.
For ideal spinless fermions and bosons, standard calcula

tions give the effect of Fermi or Bose symmetfy: 3 7
)\3
B(T)=— 75z, @ 5, §
%
%

where = =1, with the plus sign for bosons and the minus
for fermions. Thus fermions exert a larger pressure and I
bosons a smaller pressure on the walls than a classical gas
the same temperature.

Compare this result with that for a classical interacting  °

gas, where the second virial coefficient is givert%y Bose
| | | |
0.0 0.2 04 0.6 0.8 1.0

B(T)=%f dr (1—e AU, (9) £/

Fig. 1. Plot of the effective statistical interaction versus position. For bosons

whereU(r) is the real interatomic potential at separation this function is attractive; for fermions it is repulsive.

and B8=1/kgT. It is evident from Eq.9) that a completely
repulsive potential leads to a positiB{T) and a positive
contribution to the pressure, while an attractive one results in
a negative contribution.
A connection to the Fermi or Bose ideal gas is made byanalogy to be useful? Our opinion is that it is not very help-

considering the pair density matrix given by ful, as we argue below.
—BH In a classical gas the rms average momentum remains
G(19) = L e LPLPY) , ' .
(1,2=V Tr(e PMiz) N p2=./3mksT even when there are interactions. Pressure is

force per unit area and the force comes from the impulse of

6 — Bleg +eg) an atom striking the wall. The average force that one single
A plEpz Yoy (T1) Pp,(T2) € F PP particle in a vessel exerts on the wall is, by the impulse-
. . momentum theorent; = Ap/At, whereAp is twice the av-
X(1+ 7Py (1) iy (T2), (100 erage momentum antit is the average time over which the

wherey (1) is a plane-wave momentum state for particle force is exerted. HerAt is notthe time of contact, but rather
it the time for an atom to cross the widthof the container,

andP,, is the permutation operator interchangmgandr . that is, At=mL/p. When we make the volume of an ideal

. . 2 —.
The single-particle energy is,=p®/2m. If we change the ¢j5qgical gas smalléat constant), pis unchanged, but the
momentum sums to integrals and carry out the calculationg,» it time At is diminished causing the pressure to in-
we .‘t).bta'n thel f.ollowmg result, which depends on reI""t'vecrease. Analogously, if we turn on the repulsive interactions
positionT,, only: in a classical gas with no change in the temperatung, dhe
2 52 ; it .
G(r.)=(1+ ne 2™ 11 pressure rises because of a decreased average transit time:
(1) =( 7’ _ ) ) some molecules bounce off others back to the wall they just
The purely classical ideal gas result would correspong to left. But this isnot what happens in the fermion case.
=0 with no correlation between particles. Fermions, on the The idea that the correlation hole in the two-body density
other hand, havé&s small within a thermal wavelength, an Eq. (11) gives rise to “bounces” or deflections of fermions
example of the spatial consequences of the Pauli principldrom one another is a misconception that arises from the idea

Bosons haves larger than the classical value. This result is©of @ Pauli repulsion. When we compare Fermi gas dynamics
consistent with the Griffiths’ calculation Q(X1—X2)2> cited  to that of classical statistics, what is altered is not the effec-

in Sec. I. tive L in the transit time, but rather thgin both Ap and in
Spatial correlations in a dilute classical gas are describedt. For a given value of, the momentum distribution in an
by the two-particle distribution function given b$(1,2) ideal Bose or Fermi gas differs from that in an ideal classical
=e U0, Thus, as in Refs. 4—6, we can identify an effec-93S; The exact quantum second virial coefficient is given
b

tive statistical potential by analogy as

Uei(r) = —kgT IN(1+ 72717, (12)

1
This quantity is plotted in Fig. 1; it is purely repulsive for B(T)= WJ drydrp[1-G(1,2)]. (13
fermions and attractive for bosons. If we substitute @)
into the classical expression for the second virial coefficient,
we obtain precisely the result in E@). A repulsive potential ~ This result explains why the substitution bfe; into the
excludes atoms from approaching too closely and raises thelassical equation gives the exact answer. Nevertheless, it is
pressure; fermions also have an “excluded volume”\df  not the spatial dependence Gf that gives us physical in-
and an increase in pressure. This comparison seems to be tight; it is themomentundependence. If we carry out the
major impetus behind the concept of effective force as apposition integration indicated in E¢L3) with G as given by
plied to Fermi statistics. Is the physics similar enough for theEq. (10), the result is
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1 ~%?n¥/m,. Chandrasekh&t develops a second-order dif-
ﬁf drydr,G(1,2) ferential equation fon(r) from these steps. We can do a
simple dimensional analysis based on Etp) by replacing
A (1 B B dP/dr by —P/R, n(r) by N/R%, M(r) by M(R)=mgN,
= V{§|:p12pz e 5(€P1+EP2)+ 7]% e ZBEP }. (14) etc', to arrlve at €
The quantity inside the curly brackets is the partition func- _ h? 1 - 1 (16)
tion for two quantum particles. The first term is the classical Grnemae [NESRNYEE,

partition function, and its contribution already is accounted
for in the classical ideal gas pressure; it cancels out in Eqequation(16) is the usual nonrelativistic result, which does
(13). The second term corrects the incorrect classical monot demonstrate the collapse at some lawydike the rela-
mentum distribution represented by the first term. The clastivistic case, but gives the idea behind the stability of the star.
sical term includes double-occupation states; for fermions The gravitational attraction on a mass element is balanced
the second term cancels these. For bosons, the classida) the difference in Pauli pressure across the mass shell. In
counting undercounts these double-occupation terms, and theder to develop a qualitative argument for the strong density
second term corrects that fault as well. Writing the secondiependence of the Pauli pressure that supports the star
virial coefficient in momentum space clarifies how the against gravitational collapse, we can return to the argument
change in momentum distribution affects the pressure. Falised for the virial coefficient. In a box of sidle the pressure
bosons, there is a lowering of the average momentum so thg force per unit are#, or P=(N/A)Ap/At. But the aver-
force on the wall is lessened. For fermions, the momentum i ge momentum per particlep imparted to the wall for a
raised increasing the pressure. The idea of an effective rep egenerate Fermi gas is of orda, the Fermi momentum
sion between fermions ignores the real physics and gives Phe transit time i\t~ Lm./ so, that '
very poor analogy with classical repulsive gases. el P,

White dwarf stars and related objectk is the fermion N 2
zero-point pressure that prevents the collapse under gravita- p~ — L PE (17)
tional forces of the white dwarf star. Krattesays, “A white AL me/pe  °mg’

dwarf star is prevented from collapse by the Pauli principle . . .
which prevents the electron wave functions from being! "€ Fermi momentum is strongly dependent on the density

squeezed too close together ... Will the repulsion of the eled2€cause of the necessity of filling the single-particle energy
tron wave functions due to the Pauli principle be ablelévels with two per momentum state. This requiremeritlis
to prevent the collapse of any star, no matter how massive?= (2V/h®)fdpn,, with n, a step function cutting off ap
(This line of reasoning leads to a discussion of neutron $tars=pg. This integral givepe=7(372n.) 2. Note thatpg is
We believe this qualitative picture of what goes on in a whiterelated to a deBroglie wavelength by
dwarf star could, as with the second virial coefficient inter-
pretation, be greatly improved by a discussion in terms
of the momentum-space features of the Pauli principle. Most
elementary discussions of white dwatf&incorporate a dis-
cussion of Fermi repulsion by doing a dimensional analysisThus the maximum wavelength is approximately the inter-
that equates the zero-point energy of the ideal Fermi gas tparticle separation, which one can argue is necessitated by
the gravitational self-energy of the star matter. The Fermthe Pauli principle requiring that the electrons be in single-
temperature is much greater than the physical temperature particle wave packets compact enough that they do not over-
the star so that th& =0 fermion gas is used as a model. lap. This argument is about quantum mechanical wave func-
An alternative physical description arises from consider-ion correlation rather than an argument based on an effective
ing the hydrostatic equilibrium conditions of the sthThe  force. The connection to the Pauli pressure is the high mo-
star is assumed to contah nuclei (assumed to be all he- mentum that this correlation induces. We end up with
lium) in radiusR. A spherical shell of thicknesdr at radius 5 )
r has an outward force due to the difference between the p_ E%h_nsls_ (19)
pressureP(r) on the inner surface and the pressirér mg mg °
+dr)=P+dP (with dP<0) on the outer surface, caused

by the nonuniform nuclear number density of the sir,). too close together,** we mean that the fermion wave func-

This net outward force #r?dP is balanced by the gravita- o must have sufficient curvature for nodes to appear when-
tional pull toward the center due to the total madsr)  eyer any two coordinates are equal, then the idea leads di-
enclosed by the shell. The mass of the shell itself isrectly to the correct behavior. This extra curvature requires
4ar®n(r)dr mye, wherem, is the helium mass, so that  higher Fourier components. The pressure differs from one
kind of statistics to another directly because of differing mo-
dp= GM(r)n(zr)dr Mhe (15  mentum distributions; the Fermi distribution involves larger
r average momenta, giving it a Pauli pressure. The idea of
o . ) “wave function repulsion” as a correlation that leads to this
The crucial idea is thaP is the pressure of a degenerate momentum distribution might be useful, although the word
electron gas with the electron density maintained by chargeyepyision” still carries the connotation of a force, which is
neutrality at twice the helium number density.(r) less useful.
=2n(r). For a nonrelativistic model the Pauli pressure at The physical explanations of neutron stHtsstrange
T=0 is given by standard statistical arguméftss P quark mattet® and the Thomas—Fermi model of the

h
pF=X~hné’3. (18

If by “preventing the wave functions from being squeezed
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atom?® are analogous to the white dwarf star in that the Paulstate, thereby implying that is negative. This energy split-

pressure of a Fermi fluid is the basis of resistance to comting occurs independent of any spin effects.

pression. If the two particles are spin-1/2 fermions, the same phys-
The hydrogen molecule and interatomic forceise singlet ics holds, except now the symmetric wave functibn must

electron state of hydrogen is bound while the triplet state i)e associated with an antisymmetric spin function while

unbound. Is it a case of the Pauli repulsion giving the spamyst pe associated with a symmetric spin function in order

tially antisymmetric state associated with the triplet highery, keep the entire wave function overall antisymmetric. The

energy? Griffiths, applying the discussion of exchange (egylt is that Eq(22) is replaced by
forces to this problem, says “The system behaves as though

there were a ‘force of attraction’ between identical bosons,
pulling them closer together... If electrons were bosons, the E+=Eq*Jo;- 03, (23
symmetrization requirement... would tend to concentrate the
electrons toward the middle, between the two protons..., an
the resulting accumulation of negative charge would attrac
the protons inward, accounting for the covalent bond... Bu
wait. We have been ignoring spin...” He then writes about
the fact that the entire spin and space wave function must b,
antisymmetric and obtains the proper bonding in the single
state. He shows that for the spatially antisymmetric triple
state “the concentration of negative charge should actually
be shifted to the wings..., tearing the molecule apart.”
Although this explanation is very carefully worded and
provides a very useful physical picture of the hydrogen bond
a strikingly different picture of covalent bonding and anti-
bonding is given by the work of Herring. Herring argues
that the energy difference between singlet and triplet stat

hereo; is a Pauli spin matrix. This operator expression, the
econd term of which is often called the “exchange interac-
ion,” acts in spin space to associate the correct spin state
singlet or triplej with the correct energ}? 22 Because the

mmetric spatial state is the ground state, as in the distin-
uishable particle case, the singlet state energy of the elec-
rons is lower than that of the triplet state.

Note that we are not criticizing the idea quoted from Ref.
9 that the lowering of the energy in the spin singlet state can
be associated with the concentration of the electron cloud in
the region between the two nuclei. However, the energy low-
ering would arise even if the two particles were distinguish-
able; so it does not actually stem from their fermion

(in widel red at * lepist it od Ceharacte?*24 Of course, the fact that the corresponding spin
In widely separated atoms at Ieast properly INErpreted as - giqia myst pe singlet is a fermion property. The suggestion

a splitting between atomic levels due to tunneling. Considef, 4 "rorm statistics or Pauli repulsion plays a role in the
the hypothetical case of two spinless, distinguishable elec-

trons in a hydrogen molecule. The Hamiltonian has the for owering of the s_mglet relative to the triplet stat'e ok H .
misses the essential fact that much of the energy difference is

H=t,+t,+V(12)+U(1)+U(2), (200  due to the splitting between tunneling states and that the
tunneling ground state must be nodeless and symmetric.
in whicht; is the kinetic energy operator for particleV(12) Let's continue this discussion, but with the hydrogen nu-

represents the particle—particle interaction, and) is an  clei replaced with helium nuclei. We can get an idea of the
external double-well potential representing the attraction oPehavior of the electronic energy for this pair of helium at-
theith electron to the two nuclei located, sayRytandR,. ~ OmMs by using the same symmetric and antisymmetric wave
The Hamiltonian is symmetric under interchange of the twofunctions. Because of the Pauli principle, the two extra elec-
particles, so the eigenfunctions must be either symmetric offons would(in some approximationbe placed in the spa-
antisymmetric, even for these distinguishable particles. Letially antisymmetric, antibonding, triplet state, thereby losing
. andy_ represent the lowest symmetric and antisymmet{h€ tunneling energy advantage of the symmetric state. This

ric eigenfunctions, respectively, with corresponding energie€Xtra energy supplies a physical explanation for the repulsive
E. andE_. interatomic interaction when the closed-shell electron clouds

L start to overlap. Within the Born—Oppenheimer approxima-
The combination, tion?® the electronic energyplus the internuclear Coulomb
1 repulsion is used as a potential energy for the atomic nuclei.
ban(1,2=— (¢, + ), (22) The short-ranged repulsive part of this interaction potential
V2 between two rare-gas atoms is often described by a phenom-
, _ _ , , _ enological 1/*? or exponential repulsioff?’ This case is an
is afunchon for WhICh partlcle'l is localized near dReand example of a real repulsion arising; however, it is a repulsion
particle 2 near sitdR,,. If Py, is the permutation operator, petween the nuclei and not the electrons.
then the functionP1, ¢ap(1,2)= hap(2,1)= ¢pa(1,2) is lo- Although the Pauli principle is certainly vital in under-
calized about the exchanged sites, that is, particle 1 is locaktanding molecular forces, the idea of an effective fermion
ized near siteR, and particle 2 near sitR,. Herring calls  statistical repulsion has never really entered the picture. In-
the functionseg,,(1,2) andgy,(1,2) “home-base functions.” deed, we believe its introduction short-circuits the discussion
If one sets the initial conditions such that the particles are irand could cause one to miss the basic physics.
¢an(1,2), then the two particles will tunnel through the Bos&Ei_nstein co'ndensatiomondensation of bosons into
double-well barrier betwee,,(1,2) ande,.(1,2) with fre- @ harmonic trap might seem the best example of boson ef-

quencyw=(E. —E_)/%. We can write the energy of these fective attractiorf® The condensate in a trap is a noticeably
two lowest stz;tes fZ)r distinguishable particles as smaller object than the cloud of noncondensed atoms sur-

rounding it. Of course, the real reason for this is that the

E.=Eo+J, (22 ground state in the trap of the interacting bosons has a

smaller radius than that of the excited states. The particles

whereEq=(E . +E_)/2 andJ=(E,—E_)/2. A theorem®  are correlated to be in the same state; in this case it is a
states that the symmetric nodeless state must be the grousgatially more compact one.
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One of the present authors has also used the following
argument to explain the fact that the lowest excited mode in
a Bose fluid is a phonon rather than a single-particle motion:
“Bosons prefer to be in the same state with one another, so
that if one atom is pushed on by an external force, all the
particles within a deBroglie wavelengih(which is large at
low temperaturewant to move in the same way. The collec-
tive motion of a sound wave allows this while the single-
particle motions are frozen out by this tendency.” This argu-
ment might seem to be based on the idea of a kind of boson
effective attraction. A more rigorous argument is given by
Feynmarf® If & is the ground state of the Bose fluid, then
one might suppose that“"1d is an excited state involving a
single particle with momenturk. However, the state has to
be symmetric, so this state must be replacedshg'*"id,
which is precisely the one-phonon state. The particles “pre-
ferring to be in the same state” is a verbal expression to
represent wave-function symmetry. Superfluids can be de-
scribed by a “wave function”(order parameter which de-
pends on a single position variable, has a magnitude and
phase, and represents the superfluid distribution. It costs en-
ergy to make this function nonuniform, as when a vortex is
present. The system “prefers” to have the same phase and
amplitude throughout, a property sometimes called “coher-
ence.” Any idea of an effective boson attraction is better

replaced by this latter concept. Fig. 2. Diagrams for two-particle scattering.
[ll. WHERE THE IDEA OF A STATISTICAL wheref(6) is the scattering amplitud.Similarly, the prob-
INTERACTION FAILS ability of detecting particlg, in detectorD, and particlep,

] o ) in D, [as in Fig. Zb)] is given by
We have argued that the idea of a statistical fermion repul-

sion or boson attraction might lead one to miss the essential P(p; in D, andp, in D) =|f(7—6)|?. (25

physics of the physical effect being explained. Worse hows : . .
ever, is the fact that this idea might cause misconceptionwhen we do not care which particle goes to which detector,

and lead to incorrect conclusions. We present here somBeu'[jUSt want to measure Fhe cross se_ction for either particle
cases where that might occur. ' IN a detector, the probability for a particle in detecivy is

The other spin stateMost of the textbooks quoted in Sec. P(p; or p, in Dy)=|f(8)|?+|f(7— 6)|% (26)
| say unequivocally that fermions repel and bosons attract _ o o )
without the qualification of, say, the term “spinless.” These Because the particles are in principle distinguishable, there is
books have ignored, at some pedagogic risk, the effects df0 interference be@ween amplltydes, even if the detgctors
spin, which is usually taken into account only later. The ef-themselves do not identify the difference between particles.
fective repulsion or attractiofif there were ongis an effect ~ Now suppose the two particles are indistinguishable. In
of the spatial part of the wave function only. If the total spin this case the two amplitudes corresponding to Figa). @nd
state is symmetric, the space wave function is antisymmetrié(b) interfere, and must be combined before squaring. If the
for fermions and symmetric for bosons, leading to the effect@articles are identical fermions, the two-particle wave func-
envisioned in most textbooks. However, when the total spirfion is antisymmetric with respect to particle exchange. Be-
state is antisymmetrias for two spin 1/2 particles in a spin cause Figs. @) and 2b) are related by the exchange of the
singlet, or for two spin 1 particles in th®=1, m=0 state two parucles in the fllnal state, they contrlbute.t_o the total
the roles of fermions and bosons are reversed. Two spin 1/2MPlitude with opposite signs. Thus, the probability to detect
fermions in the spin singlet state behave like two spinles& fermion in detectob, is
bosons, _and two spin 1 _bosons in tBe=1, mg=0 state Prermi(P in Dy)=|f()—f(7— 6)|2. (27)
behave like spinless fermions.

Scattering theoryWhen two particles scatter elastically Equation(27) is obviously different from the distinguishable
via a repulsive force, the idea of an additional effective in-case in Eq(26). The difference is especially remarkable at
teraction due to Fermi or Bose symmetry can lead to troublef=/2, where the fermion scattering probability vanishes.
In the center-of-mass frame the two particles approach fronMoreover, in the limit ofs-wave scattering, which is a good
opposite directions and scatter into opposite directions agpproximation for some low energy cases, the scattering is
shown in Fig. 2a). If the particles are distinguishable, the independent of the anglé and the fermion probability for
probability of detecting particle, in detectorD, and par-  Scattering is zero for all angles. A similar argument holds for

ticle p, in detectorD,, is given by bosons, but with the amplitudes adding instead of subtract-
ing, leading to the scattering probability:
P(p; in Dy andp; in D) =1f(6)|?, (24 Peosd P in D1)=|f(0)+f(m—6)[2 (28)
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In this case, the scattering probability &t #/2 is twice the 100

value for distinguishable particles. Farwave scattering 80 L a)
Pgrose iS @ factor of 2 times the distinguishable value at all - I
angles. S 0r
The interpretation of these results in the context of an = a0
effective fermion repulsion or an effective boson attraction is a0 |
quite confusing. For scattering at 90 degrees, orsferave I
scattering at all angles, it looks as if the total repulsive force 0
is reduced for fermiondeading to a smaller scattering prob- 2

ability) and enhanced for bosofieading to a larger scatter-
ing probability. This scattering probability result contradicts
the notion that the scattering force should be supplemented
by an effective repulsion for fermions and partially canceled
by an effective attraction for bosons. It clearly demonstrates
why the idea of an effective repulsion or attraction is a dan-
gerous concept.

Focusing on the direct effects of the Bose or Fermi sym-
metry leads to a more useful conceptual approach to scatter- 0
Ing. .For two Ident.lcal partlgles, the total spin state s Sym-Fig. 3. (a) The cross section for electron scattering as a function of scatter-
metric. l_:OI‘ .ferm|ons ha,vmg a total Spln_ state that ISing angle for identical spingdotted ling, for the spin-zero statédashed
symmetric (either both spins up or both spins dowrhe |ine), and for the hypothetical case of distinguishable partictesid line).
spatial part of the wave function itself must be antisymmetricail cross sections are in units ah?e2/32p. (b) The differential cross
as in Eq.(5). For this wave function, the amplitude for the sectionda/d# for identical (dotted ling and spin zerddashed ling elec-
two fermions to be in the same p|acel(: r2) is Obvious|y trons relative tado/d# for distinguishable electrons.
zero. As noted in Sec. I, two identical fermions are on aver-
age farther apart than two distinguishable particles would be
under the same circumstances. Consequently, the fermions

(dG/ defermi) / (dG/ dedisting)
)
T

=

<
;
wx

interactlessand are less likely to scatter. One can similarly ~ do _ m?a® [ 1 1 2 (30)
argue that bosons are closer together on average, interact dg(Sp'n zerg= L 0|
more and arenore likely to scatter. S|n2§ coszz

This conclusion is true whether the scattering force is re-
pulsive or attractive, but it depends critically on the spin stateequation(30) differs from the identical spin case, E®9),
of the two particles. For identical particles the spin state ign the relative sign of the two terms.
necessarily symmetric, forcing the fermion spatial wave These results should be compared to what the cross sec-
function to be antisymmetric or the boson wave function totion would be if the two electrons were distinguishable. In
be symmetric. However, if the two particles are in an anti-that case, only the direct diagram of Fig. 2 contributes, and
symmetric spin state, for example, two fermions in a spin-the cross section for scattering with both spins up turns out to
zero state, the conditions are reversed. be the same as the spin-averaged cross section for electron—
As a specific example of repulsive scattering, consider thenuon scattering found in many texts, with the muon mass set
quantum electrodynamic interaction of two electr@iiller  equal to the electron mass. After symmetrizing ab@utr/2
scattering. In QED, there are two lowest-order Feynmanto account for detectors that are sensitive to either particle,
diagrams that contribute to the scattering amplitude with opthe cross section can be written as
posite signs, corresponding to the direct and exchange dia-
grams of Fig. 2. In the nonrelativistic limit, the electron spinsdfr o
do not change as a result of the interaction, due to the faqﬂ—a(d|st|ngu|shable electrops
that the low energy interaction occurs primarily via an elec-

tric field. There is then only one final spin state to consider ~ m?a® [ 1 1

when doing the calculation. If the initial state has both par- = 3p4 o " 01l (31
ticles with spin up, then the final state also has both spins sin"’z co§§

up. 'I;Pis case is treated in introductory particle physics

texts;” and the cross section for scattering is The three cases are plotted as a function of scattering

angle in Fig. 8a). All cross sections are symmetric about
7/2, so only the range 0 ta/2 is plotted. As expected, the

do ] ] m?a? 1 1 2 . . . h I '

7 (identical sping= - _ . (29 symmetric spin case gives the smallest scattering cross sec-

de 32p 7 0 2 0 tion, the antisymmetric spin case gives the largest cross sec-
si5 CoS'5 tion, and the case of distinguishable particles is in between.

Moreover, as Fig. &) shows, the ratios of the cross sections
change as a function of scattering angle. At small scattering
wheree is the fine structure constant apds the momentum angles, the fermion cross sections are almost the same as the
of the electrons in the center-of-mass frame. We note that thdistinguishable particle cross section. The maximum differ-
cross section afi=m/2 vanishes, as it should. ence occurs af=/2. It is difficult for any kind of effective
To explore the case of an antisymmetric spin wave funcfermion interaction to capture this effect, and moreover, the
tion, we can also calculate the scattering cross section fadea of an effective Fermi repulsion gives the wrong sign in
electrons in a spin-zero state: the case of a repulsive scattering force.
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Transport theory Consider the example of thermal con- E=E,+E_+gN,N—, (36)
ductivity in a polarized fermion gas. One might think from i o ) o
the idea of Pauli repulsion that increasing polarization wouldVhereE,; is the total kinetic energy of the spins, which is
shorten the particle’s mean-free path in the gas, which in turiproportional toN>” as in the ideal Fermi gas. The interaction
would lower the thermal conductivity. The opposite behav- parameterg measures the potential energy between up and
ior is more likely to happen. At sufficiently low temperature down spins. Two up spin@r two down spinsdo not “see”
wheres-wave scattering predominates, polarization will ac-each other in this model. >0, this model has three pos-
tually cause a dramatic increase #nbecause, as we have sible states. Ify is small, then the system favors less kinetic
just seen, thes-wave scattering cross section between like-energy by having\, =N_=N/2. That is, the system is an-

spin fermions vanishes and only scattering between unlik@ferromagnetic. However, i is large enough, then either all
spins, which now happens less often, can contribute to thghe spins are up or all down to minimize the potential energy
mean free path. _ o _and ferromagnetism results. The kinetic energy in this case is
We treat a gas obeying Boltzmann statistics, but havingarger than it would be iN,=N/2, but the potential energy

full quantum-mechanical collisions. For this treatment to beg ,er0. The wave function antisymmetry between two like
applicable, the deBroglie wavelength must be larger than thgjing has made them invisible to one another and noninter-
scattering length, but smaller than the average separation bggting, because their minimum separation is greater than the
tween particles. If the temperature is low enoughwave  range of the interaction. The idea of a Pauli exchange force
scattering will predominate. This situation can occur, for exwould lead one to assume a higher associated potential en-
ample, in trapped Fermi or Bose gases. The heat current f@rgy [as in Eq.(12)], but what actually happens is that the
spin specieg in the temperature gradiedfl/dz is given by  kinetic energy is raised by having more like spins, while at

arguments analogous to those for an unpolarizedgas: the same time statistics favors lowering the potential energy.
dT
Ju=—nl ke 5, (32 IV. DISCUSSION

wheren,, is the density ofu spins,vis the average velocity Our goal in this paper has been to clarify the idea of the

of either spin species,, is the mean free path of @ spin statistical effects sometimes referred to as “exchange
y L ” H “ ” H H

andks is the specific heat per molecule. In B82) s is + forces.” We believe the term “force” used in this context

. . . may mislead student&@nd even more advanced workers
for up spins and- for_ down Spins, there is a separate heatWho might misinterpret the geometrical effect being de-
equation for each spin species. We have dropped any COlgriped. We have given several examples of instances where
stant factors in the expression. Whenawave scattering giatistical or exchange forces have been invoked to provide a
dominates, up spins can interact only with down spins anonceptual explanation of the physics. We have not intro-
not with each other, and vice versa. Thus the mean free pag,ced any new physics in these examples, but we have tried

is |,=vr, where 7, is the inverse of the scattering rate to show how a teacher or writer might provide an alternative

given by interpretation that avoids the exchange force terminology
1 and thereby arrives at a deeper heuristic understanding of the
—=n_,vo,_, (33 physics. Indeed we identified several cases where the con-
Tu cept of an effective statistical force could lead to the opposite

with o, _ the cross section for spin up—down scattering. TheOf the correct answer. When a concept has that potential, it is

. : S = time to replace it.
spin densityn_,, occeurs on the right n Eo(33) bec_ause itis Our alternative heuristics have taken several forms. We
that of the target particles for the incoming spins. The

. like Griffiths’® wording: “it is not really a force at all... it is
result is that ; D
purely a geometric consequence of the symmetrization re-
n, vkg dT quirement.” For same-spin fermions, the requirement that the
Jy==— o (34)  wave function vanish whenever two particles are at the same
n_,o._ dz iy | .
position means that the wave function must have increased
If n./n_>1, the heat curreni_ for down spins is negli- curvature, which leads to an enhanced momentum distribu-
gible compared td, for the up spins, and the thermal con- tion. Indeed in many cases, the real statistical effect corre-
ductivity is sponds to a change in kinetic energ@lyat is, the momentum
distribution as in the explanation of the virial pressure or the
Ny vkg white dwarf star, whereas a force picture leads to a change in
K=hn oL (39 potential energy as in the Uhlenbeck—Gropper potential of
) o Eq. (12). Equally helpfully, the geometrical interpretation
For high polarizationsr{(; /n_>1) « can be very large. The |eads directly to the changes in the average particle separa-
increase inx and other transport coefficients for polarized tion as compared to distinguishable particles, with same-spin
systems has been predicted theoreticai}’ and also ob-  fermions farther apart on average, which nicely explains the
served experimentalfiff A similar increase also occurs if the scattering results for which same-spin fermions have a re-
particles are degenerate. The idea of a statistical repulsion {fuced interaction.
counterintuitive to this result. It is difficult to overestimate the importance of the the
Ferromagnetism A very simple mean-field picture of conceptual element of physics. Introductory courses have
magnetic fluids is provided by a model in which the particlesheen constructed that leave out much of the mathematics and
interact bys-wave scattering onli? Thus again there is no concentrate only on the “conceptual” side of the subfct.
up—up or down—down interactions, and the energy of theMoreover, we emphasize to our students that they have not
system ofN, up spins andN_ down spins is given by understood a theory until they can describe the physics in
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: . Low Temp. Phys8, 115-158(1972.
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