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Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli
principle, and a corresponding effective attraction between bosons. We examine the origins and
validity of such exchange force ideas and the areas where they are highly misleading. We propose
that explanations of quantum statistics should avoid the idea of an effective force completely, and
replace it with more appropriate physical insights, some of which are suggested here. ©2003

American Association of Physics Teachers.
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I. INTRODUCTION

The Pauli principle states that no two fermions can ha
the same quantum numbers. The origin of this law is
required antisymmetry of the multi-fermion wavefunctio
Most physicists have heard or read a shorthand way of
pressing the Pauli principle, which says something analog
to fermions being ‘‘antisocial’’ and bosons ‘‘gregarious.’’ O
ten this intuitive approach involves the statement that ther
an effective repulsion between two fermions, sometim
called an ‘‘exchange force,’’ that keeps them spatially se
rated. We inquire into the validity of this heuristic point o
view and find that the suggestion of an effective repuls
between fermions or an attraction between bosons is actu
a dangerous concept, especially for beginning stude
because it often leads to an inaccurate physical interpreta
and sometimes to incorrect results. We argue that
effective interaction interpretation of the Pauli princip
~or Bose principle! should almost always be replaced by
alternate physical interpretation that better reveals the
physics.

Physics comes in two parts: the precise mathematical
mulation of the laws, and the conceptual interpretation of
mathematics. David Layzer has said,1 ‘‘There is a peculiar
synergy between mathematics and ordinary language ...
two modes of discourse~words and symbols! stimulate and
reinforce one another. Without adequate verbal support,
formulas and diagrams tend to lose their meaning; with
formulas and diagrams, the words and phrases refuse to
on new meanings.’’ Interpreting the meaning of wavefun
tion symmetry or antisymmetry in a simple pedagogical r
resentation is thus vitally important. However, if those wor
actually convey the wrong meaning of the mathematics, t
must be replaced by more accurate words. We believe
this is the situation with the heuristic ‘‘effective repulsion
for fermions or ‘‘effective attraction’’ for bosons, or ‘‘ex
change force’’ generally.

We can demonstrate there is no real force due to Fe
Bose symmetries by examining a time-dependent w
packet for two noninteracting spinless fermions. Consi
the antisymmetric wave function for one-dimensional Gau
ian wave packets, each satisfying the Schro¨dinger equation,
and moving toward each other:
1223 Am. J. Phys.71 ~12!, December 2003 http://aapt.org
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c~x1 ,x2 ,t !5C$ f ~x1 ,x2!exp@2a~x12vt1a!2

2b~x21vt2a!2#2 f ~x2 ,x1!

3exp@2a~x22vt1a!22b~x11vt2a!2#%,

~1!

where x1 and x2 are the particle coordinates,f (x1 ,x2)
5exp@imv(x12x2)/\#, C is a time-dependent factor, and th
packet width parametersa andb are unequal. In reality, eac
single-particle packet will spread with time, but we assu
that the spreading is negligible over the short time that
consider the system. Att50, thea-packet is peaked at2a
and moving to the right with velocityv, while theb-packet
is peaked at1a and traveling to the left with the same ve
locity. Of course, we cannot identify which particle is
which packet because they are indistinguishable, and e
has a probability of being in each packet. Att50 the packets
are assumed well separated with little overlap.

At t5a/v, the wave function becomes

c~x1 ,x2 ,t !5C$ f ~x1 ,x2!exp@2a~x1!22b~x2!2#

2 f ~x2 ,x1!exp@2a~x2!22b~x1!2#%, ~2!

and the direct and exchange parts have maximal overlap.
wave function clearly vanishes atx15x2 ~at all times!. At the
time t52a/v, the packets have passed through one ano
and overlap very little again:

c~x1 ,x2 ,t !5C$ f ~x1 ,x2!exp@2a~x12a!22b~x21a!2#

2 f ~x2 ,x1!exp@2a~x22a!22b~x11a!2#%.

~3!

Now thea-packet is peaked at1a, but still moving to the
right and theb-packet is peaked at2a and still moving to
the left. The packets have moved through one another un
peded because, after all, they represent free-particle w
functions. Describing this process in terms of effective forc
would imply the presence of scattering and accelerati
which do not occur here, and would be highly misleading

Nonetheless, the concept of effective fermion repulsion
evident in many texts, particularly in discussions of the b
havior of an ideal fermion gas, a case we explore furthe
Sec. II. A common usage of the repulsion idea is in t
interpretation of the second virial coefficient of an ideal g
The first correction to the pressure of a classical ideal
1223/ajp © 2003 American Association of Physics Teachers
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due only to statistics is positive for spinless fermions a
negative for spinless bosons. Heer2 ~similar to most other
texts that treat the subject, including one authored by on
us3! says, ‘‘The quantum correction that is introduced
statistics appears as an attractive potential for Bose–Eins
~BE! statistics and as a repulsive potential for Fermi–Di
~FD! statistics.’’ Pathria4 carries the idea further, developin
a mathematical expression for the effective interaction
tween fermions or between bosons. Huang5 also quotes this
quantity. This expression first appeared in 1932 in an art
by Uhlenbeck and Gropper,6 who may well be the originators
of the whole statistical interaction picture. We discuss t
formula in more detail in Sec. II.

Wannier7 is a bit stronger in his assessment of the quant
thermal distribution function for fermions: ‘‘The particles e
ert a very strong influence on each other because a par
occupying a state excludes the others from it. This is equ
lent to a strong repulsive force comparable to the strong
forces occurring in the problem.’’ Leighton8 omits the word
‘‘effective’’ in discussing the so-called fermion interactio
‘‘As compared with the behavior of hypothetical but disti
guishable particles, Bose particles exhibit an additional
traction for one another and tend to be found near one
other in space; Fermi particles, on the contrary, repel
another and tend not to be found near one another in spa

Griffiths9 has done an interesting calculation of the av
age distance between two particles at positionsx1 and x2

when one is in stateca and the other incb ; the two func-
tions are orthogonal and normalized. For distinguishable
ticles with wave functionca(x1)cb(x2), the mean-square
separation is

^~x12x2!2&dist5^x2&a1^x2&b22^x&a^x&b , ~4!

where^x& i5*dx xuc i(x)u2. For spinless fermions the wav
function must be antisymmetrized, and for bosons symm
trized, giving

C5
1

&
@ca~x1!cb~x2!6ca~x2!cb~x1!#, ~5!

where the upper sign is for bosons and the lower for fer
ons. From this form it is easy to compute the correspond
mean-square separation as

^~x12x2!2&65^~x12x2!2&d72u^x2&abu, ~6!

where^x&ab5*dx xca* (x)cb(x). Thus he finds that boson
tend to be closer together and fermions farther apart w
compared to distinguishable particles. Griffiths comme
that, ‘‘The system behaves as though there were a ‘forc
attraction’ between identical bosons, pulling them closer
gether, and a ‘force of repulsion’ between identical fermio
pushing them apart. We call it an exchange force, altho
it’s not really a force at all—no physical agency is pushi
on the particles; rather it is a purely a geometrical con
quence of the symmetrization requirement.’’ This wordi
shows more care than the works cited above and is thus
likely to be misinterpreted. However, the term ‘‘force’’ ha
explicit meaning for physicists. It implies a push or pu
along with its associated acceleration, deflection, scatter
etc. Are these elements properly associated with the
change force? If not, then the term should be replaced
words that convey more accurate connotations.

Our intention is not to be critical of authors for using th
words ‘‘repulsion’’ and ‘‘attraction’’ in describing the statis
1224 Am. J. Phys., Vol. 71, No. 12, December 2003
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tical effects of wavefunction antisymmetry or symmetr
This concept has been with physics since the early day
quantum mechanics. Nevertheless, it is important to exam
the usefulness of this heuristic interpretation of the ma
ematics. As Layzer has pointed out,1 no such interpretation
can carry the whole weight of the rigorous mathematical f
mulation; however, if a heuristic interpretation brings alo
the baggage of subsequent misconceptions, then physi
must be more circumspect in its use.

For example, consider the following case where there
complete breakdown of the concept. Suppose two spin
fermions or bosons have a completely repulsive interpart
potential and impinge on one another at energies low eno
that there is onlys-wave scattering. As we show in Sec. II
if the scattering amplitude for distinguishable particles isf ,
then the scattering amplitude for fermions vanishes ide
cally, whereas it is 2f for bosons. In this case the statistic
symmetry has diminished the interaction for fermions—n
made it more repulsive—and it has enhanced the interac
for bosons—not made it less repulsive.

Wherever the idea of an effective force breaks down~as it
does in our wave-packet description and in thes-wave scat-
tering example!, we need to replace this interpretation wi
other heuristic interpretations that better represent the p
ics. This is our aim in the examples we analyze below.

In Sec. II we examine more closely the physics that giv
rise to the idea of an effective statistical interaction betwe
quantum particles and derive the Uhlenbeck–Gropper
mula for the interaction. Section III will take the opposi
point of view, and present cases where the idea is hig
misleading and where the effect is actually opposite the us
implication. Section IV summarizes our conclusions.

II. EXAMPLES OF THE STATISTICAL
INTERACTION

There are several contexts where the idea of a statis
interaction arises naturally, and seems to imply an effec
force. The virial correction to the pressure of an ideal ga
most likely the origin of this idea of effective interaction
The physics of white dwarf stars is another classic exam
of ‘‘Fermi repulsion.’’ The diatomic hydrogen atom is boun
in the electron singlet state, while the triplet is unboun
which is often used as an example of the effective repuls
between like-spin electrons due to the Paul principle. Wh
two rare gas atoms approach one another, there is an e
nential repulsion between the atoms, which often is
plained by the electron statistical repulsion. Similarly, wh
trapped bosons condense, they collapse to a smaller regi
the center of the trap, which gives the impression of an
fective boson statistical attraction. In each of these cases
will show that relying on the intuitive idea of Pauli repulsio
or Bose attraction may hinder understanding of the ba
phenomena. Alternative explanations are provided.

Virial expansion: A real gas has an equation of state th
differs from that of an ideal classical gas. For high tempe
ture T and low densityn of the gas, the pressureP can be
written

P5nkBT~11nB~T!!, ~7!

wherekB is Boltzmann’s constant andB is the second virial
coefficient. Equation~7! gives the lowest terms of the viria
expansion, a series in powers ofnl3, wherel is the thermal
1224W. J. Mullin and G. Blaylock
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wavelength, given byl5Ah2/(2pmkBT) for particles of
massm.

For ideal spinless fermions and bosons, standard calc
tions give the effect of Fermi or Bose symmetry:10

B~T!52h
l3

25/2, ~8!

whereh561, with the plus sign for bosons and the min
for fermions. Thus fermions exert a larger pressure a
bosons a smaller pressure on the walls than a classical g
the same temperature.

Compare this result with that for a classical interacti
gas, where the second virial coefficient is given by10

B~T!5
1

2 E dr ~12e2bU(r )!, ~9!

whereU(r ) is the real interatomic potential at separationr
and b51/kBT. It is evident from Eq.~9! that a completely
repulsive potential leads to a positiveB(T) and a positive
contribution to the pressure, while an attractive one result
a negative contribution.

A connection to the Fermi or Bose ideal gas is made
considering the pair density matrix given by

G~1,2!5V2 ^r1r2ue2bH12ur1r2&
Tr~e2bH12!

5l6(
p1p2

cp1
~r1!cp2

~r2!e2b(ep1
1ep2

)

3~11hP12!cp1
* ~r1!cp2

* ~r2!, ~10!

wherecpi
(r i) is a plane-wave momentum state for particlei

andP12 is the permutation operator interchangingr1 andr2 .
The single-particle energy isep5p2/2m. If we change the
momentum sums to integrals and carry out the calculatio
we obtain the following result, which depends on relati
position r 12 only:

G~r 12!5~11he22pr 12
2 /l2

!. ~11!

The purely classical ideal gas result would correspond th
50 with no correlation between particles. Fermions, on
other hand, haveG small within a thermal wavelength, a
example of the spatial consequences of the Pauli princi
Bosons haveG larger than the classical value. This result
consistent with the Griffiths’ calculation of^(x12x2)2& cited
in Sec. I.

Spatial correlations in a dilute classical gas are descri
by the two-particle distribution function given byGcl(1,2)
5e2bU(r ). Thus, as in Refs. 4–6, we can identify an effe
tive statistical potential by analogy as

Ueff~r !52kBT ln~11he22pr 12
2 /l2

!. ~12!

This quantity is plotted in Fig. 1; it is purely repulsive fo
fermions and attractive for bosons. If we substitute Eq.~12!
into the classical expression for the second virial coefficie
we obtain precisely the result in Eq.~8!. A repulsive potential
excludes atoms from approaching too closely and raises
pressure; fermions also have an ‘‘excluded volume’’ ofl3

and an increase in pressure. This comparison seems to b
major impetus behind the concept of effective force as
plied to Fermi statistics. Is the physics similar enough for
1225 Am. J. Phys., Vol. 71, No. 12, December 2003
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analogy to be useful? Our opinion is that it is not very he
ful, as we argue below.

In a classical gas the rms average momentum rem

Ap2̄5A3mkBT even when there are interactions. Pressur
force per unit area and the force comes from the impulse
an atom striking the wall. The average force that one sin
particle in a vessel exerts on the wall is, by the impuls
momentum theorem,F5Dp/Dt, whereDp is twice the av-
erage momentum andDt is the average time over which th
force is exerted. HereDt is not the time of contact, but rathe
the time for an atom to cross the widthL of the container,
that is,Dt5mL/ p̄. When we make the volume of an ide
classical gas smaller~at constantT), p̄ is unchanged, but the
transit time Dt is diminished causing the pressure to i
crease. Analogously, if we turn on the repulsive interactio
in a classical gas with no change in the temperature orp̄, the
pressure rises because of a decreased average transit
some molecules bounce off others back to the wall they
left. But this isnot what happens in the fermion case.

The idea that the correlation hole in the two-body dens
Eq. ~11! gives rise to ‘‘bounces’’ or deflections of fermion
from one another is a misconception that arises from the i
of a Pauli repulsion. When we compare Fermi gas dynam
to that of classical statistics, what is altered is not the eff
tive L in the transit time, but rather thep̄ in both Dp and in
Dt. For a given value ofT, the momentum distribution in an
ideal Bose or Fermi gas differs from that in an ideal classi
gas. The exact quantum second virial coefficient is giv
by10

B~T!5
1

2V E dr1 dr2@12G~1,2!#. ~13!

This result explains why the substitution ofUeff into the
classical equation gives the exact answer. Nevertheless,
not the spatial dependence ofG that gives us physical in-
sight; it is themomentumdependence. If we carry out th
position integration indicated in Eq.~13! with G as given by
Eq. ~10!, the result is

Fig. 1. Plot of the effective statistical interaction versus position. For bos
this function is attractive; for fermions it is repulsive.
1225W. J. Mullin and G. Blaylock
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2V E dr1 dr2 G~1,2!

5
l6

V H 1

2 F (
p1p2

e2b(ep1
1ep2

)1h(
p

e22bepG J . ~14!

The quantity inside the curly brackets is the partition fun
tion for two quantum particles. The first term is the classi
partition function, and its contribution already is account
for in the classical ideal gas pressure; it cancels out in
~13!. The second term corrects the incorrect classical m
mentum distribution represented by the first term. The c
sical term includes double-occupation states; for fermi
the second term cancels these. For bosons, the clas
counting undercounts these double-occupation terms, an
second term corrects that fault as well. Writing the seco
virial coefficient in momentum space clarifies how t
change in momentum distribution affects the pressure.
bosons, there is a lowering of the average momentum so
force on the wall is lessened. For fermions, the momentum
raised increasing the pressure. The idea of an effective re
sion between fermions ignores the real physics and give
very poor analogy with classical repulsive gases.

White dwarf stars and related objects: It is the fermion
zero-point pressure that prevents the collapse under gra
tional forces of the white dwarf star. Krane11 says, ‘‘A white
dwarf star is prevented from collapse by the Pauli princip
which prevents the electron wave functions from be
squeezed too close together ... Will the repulsion of the e
tron wave functions due to the Pauli principle be ab
to prevent the collapse of any star, no matter how massiv
~This line of reasoning leads to a discussion of neutron sta!
We believe this qualitative picture of what goes on in a wh
dwarf star could, as with the second virial coefficient int
pretation, be greatly improved by a discussion in ter
of the momentum-space features of the Pauli principle. M
elementary discussions of white dwarfs11,12incorporate a dis-
cussion of Fermi repulsion by doing a dimensional analy
that equates the zero-point energy of the ideal Fermi ga
the gravitational self-energy of the star matter. The Fe
temperature is much greater than the physical temperatu
the star so that theT50 fermion gas is used as a model.

An alternative physical description arises from consid
ing the hydrostatic equilibrium conditions of the star.13 The
star is assumed to containN nuclei ~assumed to be all he
lium! in radiusR. A spherical shell of thicknessdr at radius
r has an outward force due to the difference between
pressureP(r ) on the inner surface and the pressureP(r
1dr)5P1dP ~with dP,0) on the outer surface, cause
by the nonuniform nuclear number density of the star,n(r ).
This net outward force 4pr 2 dP is balanced by the gravita
tional pull toward the center due to the total massM (r )
enclosed by the shell. The mass of the shell itself
4pr 2n(r )dr mHe, wheremHe is the helium mass, so that

dP52
GM~r !n~r !dr mHe

r 2 . ~15!

The crucial idea is thatP is the pressure of a degenera
electron gas with the electron density maintained by cha
neutrality at twice the helium number densityne(r )
52n(r ). For a nonrelativistic model the Pauli pressure
T50 is given by standard statistical arguments12 as P
1226 Am. J. Phys., Vol. 71, No. 12, December 2003
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5/3/me . Chandrasekhar13 develops a second-order di

ferential equation forn(r ) from these steps. We can do
simple dimensional analysis based on Eq.~15! by replacing
dP/dr by 2P/R, n(r ) by N/R3, M (r ) by M (R)5mHeN,
etc., to arrive at

R5
\2

GmemHe
2

1

N1/3'
1

M1/3. ~16!

Equation~16! is the usual nonrelativistic result, which doe
not demonstrate the collapse at some largeM like the rela-
tivistic case, but gives the idea behind the stability of the s

The gravitational attraction on a mass element is balan
by the difference in Pauli pressure across the mass she
order to develop a qualitative argument for the strong den
dependence of the Pauli pressure that supports the
against gravitational collapse, we can return to the argum
used for the virial coefficient. In a box of sideL, the pressure
is force per unit areaA, or P5(N/A)Dp/Dt. But the aver-
age momentum per particleDp imparted to the wall for a
degenerate Fermi gas is of orderpF , the Fermi momentum
The transit time isDt;Lme /pF , so that

P'
N

AL

pF

me /pF
5ne

pF
2

me
. ~17!

The Fermi momentum is strongly dependent on the den
because of the necessity of filling the single-particle ene
levels with two per momentum state. This requirement isN
5(2V/h3)*dp np , with np a step function cutting off atp
5pF . This integral givespF5\(3p2ne)

1/3. Note thatpF is
related to a deBroglie wavelength by

pF5
\

l
'\ne

1/3. ~18!

Thus the maximum wavelength is approximately the int
particle separation, which one can argue is necessitate
the Pauli principle requiring that the electrons be in sing
particle wave packets compact enough that they do not o
lap. This argument is about quantum mechanical wave fu
tion correlation rather than an argument based on an effec
force. The connection to the Pauli pressure is the high m
mentum that this correlation induces. We end up with

P'ne

pF
2

me
'

\2

me
ne

5/3. ~19!

If by ‘‘preventing the wave functions from being squeez
too close together,’’11 we mean that the fermion wave func
tion must have sufficient curvature for nodes to appear wh
ever any two coordinates are equal, then the idea leads
rectly to the correct behavior. This extra curvature requi
higher Fourier components. The pressure differs from o
kind of statistics to another directly because of differing m
mentum distributions; the Fermi distribution involves larg
average momenta, giving it a Pauli pressure. The idea
‘‘wave function repulsion’’ as a correlation that leads to th
momentum distribution might be useful, although the wo
‘‘repulsion’’ still carries the connotation of a force, which i
less useful.

The physical explanations of neutron stars,14 strange
quark matter,15 and the Thomas–Fermi model of th
1226W. J. Mullin and G. Blaylock
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atom,16 are analogous to the white dwarf star in that the Pa
pressure of a Fermi fluid is the basis of resistance to c
pression.

The hydrogen molecule and interatomic forces: The singlet
electron state of hydrogen is bound while the triplet state
unbound. Is it a case of the Pauli repulsion giving the s
tially antisymmetric state associated with the triplet high
energy? Griffiths,9 applying the discussion of exchang
forces to this problem, says ‘‘The system behaves as tho
there were a ‘force of attraction’ between identical boso
pulling them closer together... If electrons were bosons,
symmetrization requirement... would tend to concentrate
electrons toward the middle, between the two protons...,
the resulting accumulation of negative charge would attr
the protons inward, accounting for the covalent bond...
wait. We have been ignoring spin...’’ He then writes abo
the fact that the entire spin and space wave function mus
antisymmetric and obtains the proper bonding in the sin
state. He shows that for the spatially antisymmetric trip
state ‘‘the concentration of negative charge should actu
be shifted to the wings..., tearing the molecule apart.’’

Although this explanation is very carefully worded an
provides a very useful physical picture of the hydrogen bo
a strikingly different picture of covalent bonding and an
bonding is given by the work of Herring.17 Herring argues
that the energy difference between singlet and triplet st
~in widely separated atoms at least! is properly interpreted as
a splitting between atomic levels due to tunneling. Consi
the hypothetical case of two spinless, distinguishable e
trons in a hydrogen molecule. The Hamiltonian has the fo

H5t11t21V~12!1U~1!1U~2!, ~20!

in which t i is the kinetic energy operator for particlei , V(12)
represents the particle–particle interaction, andU( i ) is an
external double-well potential representing the attraction
the i th electron to the two nuclei located, say, atRa andRb .
The Hamiltonian is symmetric under interchange of the t
particles, so the eigenfunctions must be either symmetri
antisymmetric, even for these distinguishable particles.
c1 andc2 represent the lowest symmetric and antisymm
ric eigenfunctions, respectively, with corresponding energ
E1 andE2 .

The combination,

fab~1,2!5
1

&
~c11c2!, ~21!

is a function for which particle 1 is localized near siteRa and
particle 2 near siteRb . If P12 is the permutation operato
then the functionP12 fab(1,2)5fab(2,1)5fba(1,2) is lo-
calized about the exchanged sites, that is, particle 1 is lo
ized near siteRb and particle 2 near siteRa . Herring calls
the functionsfab(1,2) andfba(1,2) ‘‘home-base functions.’
If one sets the initial conditions such that the particles are
fab(1,2), then the two particles will tunnel through th
double-well barrier betweenfab(1,2) andfba(1,2) with fre-
quencyv5(E12E2)/\. We can write the energy of thes
two lowest states for distinguishable particles as

E65E06J, ~22!

whereE05(E11E2)/2 andJ5(E12E2)/2. A theorem18

states that the symmetric nodeless state must be the gr
1227 Am. J. Phys., Vol. 71, No. 12, December 2003
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state, thereby implying thatJ is negative. This energy split
ting occurs independent of any spin effects.

If the two particles are spin-1/2 fermions, the same ph
ics holds, except now the symmetric wave functionc1 must
be associated with an antisymmetric spin function whilec2

must be associated with a symmetric spin function in or
to keep the entire wave function overall antisymmetric. T
result is that Eq.~22! is replaced by

E65E06Js1•s2 , ~23!

wheres i is a Pauli spin matrix. This operator expression, t
second term of which is often called the ‘‘exchange inter
tion,’’ acts in spin space to associate the correct spin s
~singlet or triplet! with the correct energy.19–22 Because the
symmetric spatial state is the ground state, as in the dis
guishable particle case, the singlet state energy of the e
trons is lower than that of the triplet state.

Note that we are not criticizing the idea quoted from R
9 that the lowering of the energy in the spin singlet state
be associated with the concentration of the electron clou
the region between the two nuclei. However, the energy lo
ering would arise even if the two particles were distinguis
able; so it does not actually stem from their fermio
character.23,24 Of course, the fact that the corresponding sp
state must be singlet is a fermion property. The sugges
that Fermi statistics or Pauli repulsion plays a role in t
lowering of the singlet relative to the triplet state of H2
misses the essential fact that much of the energy differenc
due to the splitting between tunneling states and that
tunneling ground state must be nodeless and symmetric

Let’s continue this discussion, but with the hydrogen n
clei replaced with helium nuclei. We can get an idea of t
behavior of the electronic energy for this pair of helium a
oms by using the same symmetric and antisymmetric w
functions. Because of the Pauli principle, the two extra el
trons would~in some approximation! be placed in the spa
tially antisymmetric, antibonding, triplet state, thereby losi
the tunneling energy advantage of the symmetric state. T
extra energy supplies a physical explanation for the repuls
interatomic interaction when the closed-shell electron clo
start to overlap. Within the Born–Oppenheimer approxim
tion25 the electronic energy~plus the internuclear Coulomb
repulsion! is used as a potential energy for the atomic nuc
The short-ranged repulsive part of this interaction poten
between two rare-gas atoms is often described by a phen
enological 1/r 12 or exponential repulsion.26,27This case is an
example of a real repulsion arising; however, it is a repuls
between the nuclei and not the electrons.

Although the Pauli principle is certainly vital in unde
standing molecular forces, the idea of an effective ferm
statistical repulsion has never really entered the picture.
deed, we believe its introduction short-circuits the discuss
and could cause one to miss the basic physics.

Bose–Einstein condensation: Condensation of bosons int
a harmonic trap might seem the best example of boson
fective attraction.28 The condensate in a trap is a noticeab
smaller object than the cloud of noncondensed atoms
rounding it. Of course, the real reason for this is that
ground state in the trap of the interacting bosons ha
smaller radius than that of the excited states. The parti
are correlated to be in the same state; in this case it
spatially more compact one.
1227W. J. Mullin and G. Blaylock



in
in

ion
, s
th

c-
le-
u
so
by
n

o

re
t

d

a
e
i

a
e
te

u
nt
w
on
om

c.
ra
se
s
ef

in
tr
c
pi
n

1
es

ly
in
bl
ro

a
e

tor,
icle

e is
tors
es.
In

the
c-
e-
e
tal
ect

e
at
s.

d
g is

for
act-
One of the present authors has also used the follow
argument3 to explain the fact that the lowest excited mode
a Bose fluid is a phonon rather than a single-particle mot
‘‘Bosons prefer to be in the same state with one another
that if one atom is pushed on by an external force, all
particles within a deBroglie wavelengthl ~which is large at
low temperature! want to move in the same way. The colle
tive motion of a sound wave allows this while the sing
particle motions are frozen out by this tendency.’’ This arg
ment might seem to be based on the idea of a kind of bo
effective attraction. A more rigorous argument is given
Feynman.29 If F is the ground state of the Bose fluid, the
one might suppose thateik"r1F is an excited state involving a
single particle with momentumk. However, the state has t
be symmetric, so this state must be replaced by( ie

ik"r iF,
which is precisely the one-phonon state. The particles ‘‘p
ferring to be in the same state’’ is a verbal expression
represent wave-function symmetry. Superfluids can be
scribed by a ‘‘wave function’’~order parameter!, which de-
pends on a single position variable, has a magnitude
phase, and represents the superfluid distribution. It costs
ergy to make this function nonuniform, as when a vortex
present. The system ‘‘prefers’’ to have the same phase
amplitude throughout, a property sometimes called ‘‘coh
ence.’’ Any idea of an effective boson attraction is bet
replaced by this latter concept.

III. WHERE THE IDEA OF A STATISTICAL
INTERACTION FAILS

We have argued that the idea of a statistical fermion rep
sion or boson attraction might lead one to miss the esse
physics of the physical effect being explained. Worse ho
ever, is the fact that this idea might cause misconcepti
and lead to incorrect conclusions. We present here s
cases where that might occur.

The other spin state: Most of the textbooks quoted in Se
I say unequivocally that fermions repel and bosons att
without the qualification of, say, the term ‘‘spinless.’’ The
books have ignored, at some pedagogic risk, the effect
spin, which is usually taken into account only later. The
fective repulsion or attraction~if there were one! is an effect
of the spatial part of the wave function only. If the total sp
state is symmetric, the space wave function is antisymme
for fermions and symmetric for bosons, leading to the effe
envisioned in most textbooks. However, when the total s
state is antisymmetric~as for two spin 1/2 particles in a spi
singlet, or for two spin 1 particles in theS51, ms50 state!
the roles of fermions and bosons are reversed. Two spin
fermions in the spin singlet state behave like two spinl
bosons, and two spin 1 bosons in theS51, ms50 state
behave like spinless fermions.

Scattering theory: When two particles scatter elastical
via a repulsive force, the idea of an additional effective
teraction due to Fermi or Bose symmetry can lead to trou
In the center-of-mass frame the two particles approach f
opposite directions and scatter into opposite directions
shown in Fig. 2~a!. If the particles are distinguishable, th
probability of detecting particlep1 in detectorD1 and par-
ticle p2 in detectorD2 is given by

P~p1 in D1 andp2 in D2!5u f ~u!u2, ~24!
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wheref (u) is the scattering amplitude.30 Similarly, the prob-
ability of detecting particlep1 in detectorD2 and particlep2

in D1 @as in Fig. 2~b!# is given by

P~p1 in D2 andp2 in D1!5u f ~p2u!u2. ~25!

When we do not care which particle goes to which detec
but just want to measure the cross section for either part
in a detector, the probability for a particle in detectorD1 is

P~p1 or p2 in D1!5u f ~u!u21u f ~p2u!u2. ~26!

Because the particles are in principle distinguishable, ther
no interference between amplitudes, even if the detec
themselves do not identify the difference between particl

Now suppose the two particles are indistinguishable.
this case the two amplitudes corresponding to Figs. 2~a! and
2~b! interfere, and must be combined before squaring. If
particles are identical fermions, the two-particle wave fun
tion is antisymmetric with respect to particle exchange. B
cause Figs. 2~a! and 2~b! are related by the exchange of th
two particles in the final state, they contribute to the to
amplitude with opposite signs. Thus, the probability to det
a fermion in detectorD1 is

PFermi~p in D1!5u f ~u!2 f ~p2u!u2. ~27!

Equation~27! is obviously different from the distinguishabl
case in Eq.~26!. The difference is especially remarkable
u5p/2, where the fermion scattering probability vanishe
Moreover, in the limit ofs-wave scattering, which is a goo
approximation for some low energy cases, the scatterin
independent of the angleu and the fermion probability for
scattering is zero for all angles. A similar argument holds
bosons, but with the amplitudes adding instead of subtr
ing, leading to the scattering probability:

PBose~p in D1!5u f ~u!1 f ~p2u!u2. ~28!

Fig. 2. Diagrams for two-particle scattering.
1228W. J. Mullin and G. Blaylock
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In this case, the scattering probability atu5p/2 is twice the
value for distinguishable particles. Fors-wave scattering
PBose is a factor of 2 times the distinguishable value at
angles.

The interpretation of these results in the context of
effective fermion repulsion or an effective boson attraction
quite confusing. For scattering at 90 degrees, or fors-wave
scattering at all angles, it looks as if the total repulsive fo
is reduced for fermions~leading to a smaller scattering prob
ability! and enhanced for bosons~leading to a larger scatter
ing probability!. This scattering probability result contradic
the notion that the scattering force should be suppleme
by an effective repulsion for fermions and partially cance
by an effective attraction for bosons. It clearly demonstra
why the idea of an effective repulsion or attraction is a d
gerous concept.

Focusing on the direct effects of the Bose or Fermi sy
metry leads to a more useful conceptual approach to sca
ing. For two identical particles, the total spin state is sy
metric. For fermions having a total spin state that
symmetric ~either both spins up or both spins down!, the
spatial part of the wave function itself must be antisymme
as in Eq.~5!. For this wave function, the amplitude for th
two fermions to be in the same place (r 15r 2) is obviously
zero. As noted in Sec. I, two identical fermions are on av
age farther apart than two distinguishable particles would
under the same circumstances. Consequently, the ferm
interactlessand are less likely to scatter. One can simila
argue that bosons are closer together on average, int
more and aremore likely to scatter.

This conclusion is true whether the scattering force is
pulsive or attractive, but it depends critically on the spin st
of the two particles. For identical particles the spin state
necessarily symmetric, forcing the fermion spatial wa
function to be antisymmetric or the boson wave function
be symmetric. However, if the two particles are in an an
symmetric spin state, for example, two fermions in a sp
zero state, the conditions are reversed.

As a specific example of repulsive scattering, consider
quantum electrodynamic interaction of two electrons~Møller
scattering!. In QED, there are two lowest-order Feynm
diagrams that contribute to the scattering amplitude with
posite signs, corresponding to the direct and exchange
grams of Fig. 2. In the nonrelativistic limit, the electron spi
do not change as a result of the interaction, due to the
that the low energy interaction occurs primarily via an ele
tric field. There is then only one final spin state to consid
when doing the calculation. If the initial state has both p
ticles with spin up, then the final state also has both sp
up. This case is treated in introductory particle phys
texts,31 and the cross section for scattering is

ds

du
~ identical spins!5

m2a2

32p4 S 1

sin2
u

2

2
1

cos2
u

2
D 2

, ~29!

wherea is the fine structure constant andp is the momentum
of the electrons in the center-of-mass frame. We note tha
cross section atu5p/2 vanishes, as it should.

To explore the case of an antisymmetric spin wave fu
tion, we can also calculate the scattering cross section
electrons in a spin-zero state:
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ds

du
~spin zero!5

m2a2

32p4 S 1

sin2
u

2

1
1

cos2
u

2
D 2

. ~30!

Equation~30! differs from the identical spin case, Eq.~29!,
in the relative sign of the two terms.

These results should be compared to what the cross
tion would be if the two electrons were distinguishable.
that case, only the direct diagram of Fig. 2 contributes, a
the cross section for scattering with both spins up turns ou
be the same as the spin-averaged cross section for elect
muon scattering found in many texts, with the muon mass
equal to the electron mass. After symmetrizing aboutu5p/2
to account for detectors that are sensitive to either parti
the cross section can be written as

ds

du
~distinguishable electrons!

5
m2a2

32p4 S 1

sin4
u

2

1
1

cos4
u

2
D . ~31!

The three cases are plotted as a function of scatte
angle in Fig. 3~a!. All cross sections are symmetric abo
p/2, so only the range 0 top/2 is plotted. As expected, th
symmetric spin case gives the smallest scattering cross
tion, the antisymmetric spin case gives the largest cross
tion, and the case of distinguishable particles is in betwe
Moreover, as Fig. 3~b! shows, the ratios of the cross sectio
change as a function of scattering angle. At small scatte
angles, the fermion cross sections are almost the same a
distinguishable particle cross section. The maximum diff
ence occurs atu5p/2. It is difficult for any kind of effective
fermion interaction to capture this effect, and moreover,
idea of an effective Fermi repulsion gives the wrong sign
the case of a repulsive scattering force.

Fig. 3. ~a! The cross section for electron scattering as a function of sca
ing angle for identical spins~dotted line!, for the spin-zero state~dashed
line!, and for the hypothetical case of distinguishable particles~solid line!.
All cross sections are in units ofm2a2/32p4. ~b! The differential cross
sectionds/du for identical ~dotted line! and spin zero~dashed line! elec-
trons relative tods/du for distinguishable electrons.
1229W. J. Mullin and G. Blaylock
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Transport theory: Consider the example of thermal co
ductivity in a polarized fermion gas. One might think fro
the idea of Pauli repulsion that increasing polarization wo
shorten the particle’s mean-free path in the gas, which in t
would lower the thermal conductivityk. The opposite behav
ior is more likely to happen. At sufficiently low temperatu
wheres-wave scattering predominates, polarization will a
tually cause a dramatic increase ink, because, as we hav
just seen, thes-wave scattering cross section between lik
spin fermions vanishes and only scattering between un
spins, which now happens less often, can contribute to
mean free path.

We treat a gas obeying Boltzmann statistics, but hav
full quantum-mechanical collisions. For this treatment to
applicable, the deBroglie wavelength must be larger than
scattering length, but smaller than the average separation
tween particles. If the temperature is low enough,s-wave
scattering will predominate. This situation can occur, for e
ample, in trapped Fermi or Bose gases. The heat curren
spin speciesm in the temperature gradientdT/dz is given by
arguments analogous to those for an unpolarized gas:32

Jm52nmv̄ l mkB

dT

dz
, ~32!

wherenm is the density ofm spins,v̄ is the average velocity
of either spin species,l m is the mean free path of am spin,
andkB is the specific heat per molecule. In Eq.~32! m is 1
for up spins and2 for down spins; there is a separate he
equation for each spin species. We have dropped any
stant factors in the expression. Whens-wave scattering
dominates, up spins can interact only with down spins a
not with each other, and vice versa. Thus the mean free
is l m5 v̄tm where tm is the inverse of the scattering ra
given by

1

tm
5n2mv̄s12 , ~33!

with s12 the cross section for spin up–down scattering. T
spin densityn2m occurs on the right in Eq.~33! because it is
that of the target particles for the incomingm spins. The
result is that

Jm52
nm

n2m

v̄kB

s12

dT

dz
. ~34!

If n1 /n2@1, the heat currentJ2 for down spins is negli-
gible compared toJ1 for the up spins, and the thermal co
ductivity is

k5
n1

n2

v̄kB

s12
. ~35!

For high polarizations (n1 /n2@1) k can be very large. The
increase ink and other transport coefficients for polarize
systems has been predicted theoretically33–35 and also ob-
served experimentally.36 A similar increase also occurs if th
particles are degenerate. The idea of a statistical repulsio
counterintuitive to this result.

Ferromagnetism: A very simple mean-field picture o
magnetic fluids is provided by a model in which the partic
interact bys-wave scattering only.12 Thus again there is no
up–up or down–down interactions, and the energy of
system ofN1 up spins andN2 down spins is given by
1230 Am. J. Phys., Vol. 71, No. 12, December 2003
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whereEs is the total kinetic energy of thes spins, which is
proportional toNs

5/3 as in the ideal Fermi gas. The interactio
parameterg measures the potential energy between up
down spins. Two up spins~or two down spins! do not ‘‘see’’
each other in this model. Ifg.0, this model has three pos
sible states. Ifg is small, then the system favors less kine
energy by havingN15N25N/2. That is, the system is an
tiferromagnetic. However, ifg is large enough, then either a
the spins are up or all down to minimize the potential ene
and ferromagnetism results. The kinetic energy in this cas
larger than it would be ifNs5N/2, but the potential energy
is zero. The wave function antisymmetry between two li
spins has made them invisible to one another and nonin
acting, because their minimum separation is greater than
range of the interaction. The idea of a Pauli exchange fo
would lead one to assume a higher associated potentia
ergy @as in Eq.~12!#, but what actually happens is that th
kinetic energy is raised by having more like spins, while
the same time statistics favors lowering the potential ene

IV. DISCUSSION

Our goal in this paper has been to clarify the idea of
statistical effects sometimes referred to as ‘‘exchan
forces.’’ We believe the term ‘‘force’’ used in this contex
may mislead students~and even more advanced workers!,
who might misinterpret the geometrical effect being d
scribed. We have given several examples of instances w
statistical or exchange forces have been invoked to provid
conceptual explanation of the physics. We have not int
duced any new physics in these examples, but we have
to show how a teacher or writer might provide an alternat
interpretation that avoids the exchange force terminolo
and thereby arrives at a deeper heuristic understanding o
physics. Indeed we identified several cases where the
cept of an effective statistical force could lead to the oppo
of the correct answer. When a concept has that potential,
time to replace it.

Our alternative heuristics have taken several forms.
like Griffiths’9 wording: ‘‘it is not really a force at all... it is
purely a geometric consequence of the symmetrization
quirement.’’ For same-spin fermions, the requirement that
wave function vanish whenever two particles are at the sa
position means that the wave function must have increa
curvature, which leads to an enhanced momentum distr
tion. Indeed in many cases, the real statistical effect co
sponds to a change in kinetic energy~that is, the momentum
distribution! as in the explanation of the virial pressure or t
white dwarf star, whereas a force picture leads to a chang
potential energy as in the Uhlenbeck–Gropper potentia
Eq. ~12!. Equally helpfully, the geometrical interpretatio
leads directly to the changes in the average particle sep
tion as compared to distinguishable particles, with same-s
fermions farther apart on average, which nicely explains
scattering results for which same-spin fermions have a
duced interaction.

It is difficult to overestimate the importance of the th
conceptual element of physics. Introductory courses h
been constructed that leave out much of the mathematics
concentrate only on the ‘‘conceptual’’ side of the subject37

Moreover, we emphasize to our students that they have
understood a theory until they can describe the physics
1230W. J. Mullin and G. Blaylock
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simple conceptual terms. Given that emphasis, we offer
following guiding principle regarding statistical symmetrie
‘‘May the force benot with you.’’
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