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The historical development of a quantitative perception of the processes of exponential

growth and decay is traced from its ancient origins through pre-20th century mathematical
formulations and physical applications. Evidence indicates that the concepts of the mean life
and the half life and their relationships to linear differential rate equations and to multiple
simultaneous and sequential processes, as well as the nonlinear conditions which bring about
the breakdown of the exponential law, were all understood and presented in written records
long before their now nearly synonymous application to nuclear radioactivity. Exponential

processes were among the earliest quantitative concepts to be mathematically formulated,
and our modern understanding of them can be enhanced by historical perspective.

L. INTRODUCTION

During this century studies of dynamical processes which
have a fixed halving or doubling interval have provided a
wealth of information concerning the nature of our physical
world. For example, nuclear decay processes have been used
to ascertain the dates of cosmological, geological, and ar-
chaeological events, as well as to provide a sensitive probe
of the properties of the nucleus itself. Similarly, atomic and
molecular decay processes have been used to deduce stellar
and interstellar chemical abundances, and play a key role
in the understanding of luminescent phenomena, laser
technology, chemical reactions, etc. Many other practical
examples of exponential and nearly exponential processes
exist,! which make them extremely useful pedagogically.
Students with limited mathematical background often find
the exponential, with its infinite number of nonvanishing
differential rates of change, to be less formidable than a
few-times differentiable quantity such as uniformly ac-
celerated speed or position. A general familiarity with the
exponential concept exists today, which is at least partially
due to the wide interest in radioactivity, and indeed the
exponential law is almost always discussed by analogy with
this application. However, the radioactive decay law was
not discovered until 1900,2 when exponential processes had
already been studied, utilized, and described in written
records for a very long time. Since it involved a newly dis-
covered phenomenon, the early literature of radioactivity
often presented the various physical and mathematical
properties of the exponential process as though they also
were new. Thus the definitions of the half life and mean life,
the solutions to the coupled rate equations and their im-
plications for complex systems containing simultaneous and
sequential processes,? and other similar features were de-
duced from first principles, without reference to earlier
applications in other fields. It is therefore interesting to trace
the historical development of the concepts of exponential
growth and decay prior to its popularization in radioactivity,
for it was one of the earliest dynamical processes to be
formulated mathematically, and its basic simplicity may
be partially concealed by the modern mathematical sym-
bolism in which it has been embedded.

II. ANCIENT FORMULATIONS
A. The geometric progression

The modern algebraic exponential concepts and notations
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were not developed until the 17th century. However,
physical examples of exponential growth and decay appeal
to very basic number concepts and could be recognized with
little mathematical abstraction. The exponential law is most
concretely stated as a one-to-one correspondence between
an arithmetic progression (formed by repeated successive
addition of a quantity) such as

0,1,2,3,4,...

and a geometric progression (formed by repeated successive
multiplication by a quantity) such as

1,2,4,8,16,...

or its reciprocal, the halving progression. Here the expo-
nential law is to be distinguished from the power law, in
which there is a one-to-one correspondence between an
arithmetic progression and a progression such as 1, 4, 9,
16, ..., formed when terms in an arithmetic progression
are raised to a fixed power.

One of the most striking features of a geometric pro-
gression is its generation of large and small numbers. For
example, 80 successive doublings of a 1-cm length exceeds
the distance to the Andromeda nebula, and 80 successive
halvings of 1 mole of material splits the last remaining
molecule of the sample. In the 3rd century B.C. Archi-
medes?-6 compared large numbers with the elements of a
geometric progression generated by repeated successive
multiplication with the factor 10® and classified their sizes
according to the elements of a corresponding arithmetic
progression. However, many other features of the geometric
progression had been recognized long before the time of
Archimedes, and had, e.g., been recorded on Egyptian pa-
pyrus’ and Sumerian cuneiform tablets.?

B. Summation properties

The ancient Egyptians were masters of the geometric
progression, and constructed their. entire system of basic
arithmetic operations around it.° Thus multiplication was
effected by first forming a geometric progression by suc-
cessive doubling of the multiplicand, then adding together
selected elements from this progression so as to correspond
to the multiplier. Although they used a decimal number
system for integers, a binary system was used for subdivision
of units, and noninteger quantities were often expressed as
a sum of selected elements from the so-called “Horus Eye”
fractions %, Ys, . . ., Yes. Through this repeated manipu-
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Table 1. The 7 house-cat problem from the Rhind Egyptian papyrus
of around 1650 B.C. :

Multiplication

by 7 Houses Cats Mice .Speit Heckats Total
House inventory I 7 49 343 2401 2801
Doubled 2 14 98 686 4802 5602
Doubled again 4 28 196 1372 9604 11204
Village inventory 7 49 343 2401 16807 19607

lation, various properties of the geometric progression be-
came known, and examples of their insights can be seen on
papyrus records. Problem number 79 of the Rhind papyrus,
compiled by the scribe A ‘h-mos¢ in about 1650 B.C., is the
famous puzzle of the seven housecats'® described in Table
I. The entries in roman type appeared on the papyrus and
have been interpreted to mean “In a certain village there
were 7 houses; each house had 7 cats; each cat caught 7
mice; each mouse would (were it not for the cats) have eaten
7 ears of spelt; each ear of spelt produced 7 hekats (about
half a peck) of grain at harvest. How many hekats of grain
were saved by the presence of the cats and (unasked, but
answered) how many heterogeneous elements are there in
the sequence?”” The probable method of solution was sug-
gested by Neugebauer!! in 1926, and is indicated by the
entries in italics. The village inventory for each category is
obtained by doubling the house inventory twice and adding
the three entries. The village inventory for one item is nu-
merically equal to the house inventory for the next item, so
the process can be continued until the village inventory of
saved grain (16 807 hekats) is obtained. The heterogenous
sum (19 607) is computed by two methods which provide
a check: by summing the five items in the village inventory,
and by taking the house total, doubling it twice, and adding
these three numbers. The entire procedure was performed
using only simple addition, by virtue of the properties of the
geometric progression.

This particular problem of sevens has propagated
throughout the ages, and occurs in the writings of Fibonacci
in 1202 (with 6 items: old women, packs, sacks, loaves,
knives, and sheaths)!'2 and still persists in a Mother Goose

. rhyme (with 4 items: wives, sacks, cats and kits, all met on
the way to St. Ives).!> These summation properties of a
geometric progression can provide insight into what we
would now call the integral properties of the exponential
function. The fact that the sequence formed by a cumulative
sum of the successive elements in a geometric progression
.grows itself in nearly geometric ratio must have been at least
intuitively recognized by the ancient Egyptians.'* An ex-
plicit formula relating the cumulative sum to the extreme
elements in the sequence can be deduced by noting that
multiplication of the sum by the term ratio merely shifts the
elements of the sequence, yielding the same sum when
corrected for the extreme elements. This quantitative in-
sight was probably beyond the Egyptian mathematics of the
Rhind papyrus,!! but the general formula was certainly
widely known by the end of the 4th century B.C.!° and was
elegantly and generally proven using ratio and proportion
in Euclid’s Elements (Book IX, Proposition 35) in about
300 B.C. In modern notation Euclid’s formula is written

rn = ﬂl_f_].
r-1

(1)

S
i
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Cases for which this sum converges for large /V are partic-
ularly interesting. It has been reported'® that one bit of
papyrus from around 1800 B.C. contained the phrase
“multiply by one-half to infinity,” which could suggest that
the ancient Egyptians considered the infinite-halving pro-
gression, and were perhaps confronted by the concept of a
limit. It was this series which Zeno of Elea used to formulate
his “Paradox of the Dichotomy” which disturbed Greek
mathematics in around 450 B.C. and brought about a con-
cern for rigor in passing to a limit. Fuclid’s Elements, Book
X, Proposition 1 deals with the convergence of the dichot-
omy problem. Questions of convergence were carefully
considered by Archimedes when, in around 250 B.C., he
summed the infinite quartering series in Proposition 23 of
his treatise Quadrature of the Parabola.!’

C. Differential Rate Properties

The connection between rates of change and the geo-
metric progression was also recognized very early in a quite
practical application. The practice of paying 10%-20%
annual interest on loan of produce or precious metals was
common in Babylonia in 2000 B.C.!? (later interest rates
were legislated to a lower level). Quantitative concepts were
conveyed through specific numerical (sexagesimal based)
examples using precomputed tabulations. According to the
practice of the times, compound interest was accrued at an
agreed fixed interval, and for an uncompleted interval
simple interest, based on the indebtedness at the last com-
pleted compounding interval, was assessed. Thus the in-
debtedness at an arbitrary time could be computed by a
linear interpolation between the entries of the compound
interest tables (which are of course the elements of a geo-
metric progression).

A Louvre cuneiform tablet!® from around 2000 B.C. (see
Fig. 1) asks the question “How long does it take an amount
invested at 20% annually compounded interest to double
itself?” It goes on to outline the solution, utilizing a tabu-
lation of the quantity (6/5)”, and linearly interpolating
between 7 = 3 and # = 4 to obtain the correct answer, 3 yr
9 and 4/9 months. Thus, in some sense, this tablet can be
regarded as expressing the essentials to the exponential
solution of a differential rate equation and relates a dis-
cretely compounding analog of the half-life to the rate
constant. It is not recorded whether the Sumerian financiers
noted that not only the indebtedness, but also the interest,
the interest on the interest, etc., increased at 20%/yr, but
such insights were clearly within reach for a profit-minded
investor in 2000 B.C.

Two Berlin tablets2? from the same period also consider
a 20% annual interest rate, but with compounding periods
only once every 5 yr. Thus the compounding and doubling
periods coincided and the indebtedness could be computed
by linear interpolation using a tabulation of 2. The specific
problem provided the initial and final indebtedness and
asked for the number of elapsed compounding periods. The
method of solution was complicated, but it has been sug-
gested by Neugebauer? that it utilized the operational
concept of, and gave a symbolic notation for, inverse ex-
ponentiation, the equivalent of a logarithm with the base
2. However, due to the linear interpolation, it was at best
a logarithmic characteristic, lacking a mantissa and not
used for Napierian multiplication. Lacking was the concept
of continuous compounding, that is (in modern notation),
calculation of a* when x is not an integer. Tabulations were
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Fig. 1. Louvre cuneiform AO 6770 from about 2000 B.C. On lines 9 and
10 the question is posed “How long does it take for an amount invested
at 20% annually compounded interest to double itself?”” Lines 11-14 de-
scribe a linear interpolation between the 3-yr and 4-yr compounded totals,
line 15 gives the number 2 plus 33/60 plus 20/602, and lines 16 and 17
explain that this is the number of months short of 4 yr at which the dou-
bling occurs. ‘ ' :

made by successive repeated multiplication, and interpo-
lation methods involving either extraction of roots or infinite
series expansion were to come much later.

IIl. PERCEPTIVE LINEARIZATION OF
STIMULI

A. Weber-Fechner law

Although the mathematical properties of exponential
processes were clearly understood in the ancient world,
many physical examples went unrecognized because of the
approximately logarithmic response of human perception,
which causes exponentially varying stimuli to seem linearly
varying to the senses. This tendency was quantitatively
formulated by Weber and Fechner?! in the mid-19th cen-
tury. They observed that the ability to discriminate between
two similar stimuli depends upon the ratio of (rather than
the difference between) the intensities of the stimuli. This
is true, for example, for both the intensities and frequencies
of light and sound waves. Although only incidental to the
development of the exponential concept, two examples of
the linear perception of an exponential variation have im-
plications worthy of mention—these are the studies of
musical pitch and of stellar magnitudes.

B. Pythagorean harmony

Anﬁcipating the Weber-Fechner law, the Pythagoreans
recognized that human perceptions of differences in musical
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pitch correspond to ratios of vibrating string or air column
lengths. It is said that Pythagoras himself discovered that
pleasing chords are achieved if length ratios correspond to
successive elements of an arithmetic progression, 1 /2,2/3,
and 3/4, which define, respectively, the octave, fifth, and
fourth. The definition of the tone, or difference between a
fourth and a fifth, must soon have followed. The Pythago-
rean diatonic scale was constructed by forming sequential
length ratios of either 9/8 (the tone) or 256/243 (the
lemma). Aristoxenos broke with the Pythagorean concept
of harmony and constructed an even tempered scale using
the ability of the ear to distinguish an equal succession of
increments of pitch, which results in an exponentially de-
creasing series of string or air column lengths. He then at-
tempted to develop a mathematical formulation in which
musical intervals are calculated by addition rather than
multiplication, which should have concluded with the dis-
covery of logarithms. Unfortunately Aristoxenos divided
the intervals arithmetically rather than by extraction of
roots,?2 despite the fact that these calculations must have
differed measurably from the even tempered (exponential)
string length progression determined by a good ear. Thus
Aristoxenos was only prorating the “interest” between
“compounding periods” as had the Sumerian bankers long
before, and the resemblance to logarithms was more a co-
incidence than a conceptual breakthrough.

C. Stellar magnitudes

In a similar way, the difference in perceived brightness
between two light sources of the same color distribution is
essentially proportional to the ratio of their intensities,
another example of the Weber-Fechner Law. In the Al-
magest, Ptolemy cataloged the apparent brightness of many
stars according to six classes. We now know that these
classes differ progressively by an intensity ratio of about 2.2
to 2.8, hence the classes are an arithmetic progression de-

- scribing a crude geometric progression of stellar intensities.

During the year 1572 there was a great supernova upon
which Tycho Brahe made very careful observations. He
recorded the dates at which the brightness of the supernova
passed from one of Ptolemy’s classes to the next, as judged
by adjacent Almagest stars. The supernova intensity re-
mained within a class for essentially a constant interval,
equal to about 2 months. Thus the decay of the supernova
was exponential, and Tycho’s sharp eyes and record book
served as a direct reading semilogarithmic analyzer.
Baade?? has studied the observations of Tycho Brahe, and
supplemented them with the Chinese records of the Crab
Nebula supernova of 1054, Johannes Kepler’s observations
of the 1604 supernova, and his own measurements of the
1938 supernova and has deduced that the light curve of this
type of supernova has a half-life of 55 days. This lifetime
has been attributed?* to the decay of the element califor-
nium-254, which has been found to be produced in hydro-
gen-bomb explosions.

IV. BIOLOGICAL GROWTH

Possibly the most important example of exponential
growth (and deviations from it) concerns biological growth.
An early formulation of this application was made in 1202
by Leonardo of Pisa, called Fibonacci. As a mathematical
exercise he asked the question “How many pairs of rabbits
can be produced from a single pair in a year if each pair
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begets a new pair every month, which the second month
become productive, and no deaths occur?’25:2¢ The result
is the familiar “Series of Fibonacci”

1,1,2,3,58,13,...

in which each term after the second is the sum of the pre-
vious two. For large numbers the ratio of successive terms
increase by a factor which approaches (v/5 + 1)/2 (the
“golden section”?7), and hence it approaches a geometric
progression. The Fibonacci numbers occur naturally in, e.g.,
the arrangement of scales in a fir cone and in the florets of
various flowers. This phenomenon was studied by, among
others, Leonardo da Vinci, Goethe, and Kepler, and is
known as phyllotaxis.?® A rectangle can be constructed by
a successively spiraled juxtaposition of squares with sides
corresponding to the Fibonacci numbers. For large numbers
the locus of outer adjacent corners of this figure approaches
a logarithmic spiral, which occurs, e.g., in the Nautilus shell
and the Ram’s horn.

The implications of this problem were used by Leonhard
Euler?? as calculational exercises in 1735. He showed that
six survivors of the Flood would, in 200 yr, have 10° de-
scendants if their population grew by about 1/16 per year.
In 400 yr this would be 10!! descendants which he said
would exceed the number which the earth could sustain. He
also showed that mankind would double itself in 100 yr if
it increased by about 1/144 per year, and that a 1% yearly
growth rate would cause the population to increase an order
of magnitude every 231 yr. The economic and social con-
sequences of such calculations were beginning to arouse
interest, and in 1753 Robert Wallace3? proposed that
mankind naturally increases by successive doubling, and
tends to do so thrice in 100 yr. These ideas influenced
Thomas Malthus who, in his famous essay3! of 1798, as-
serted that the population, if unchecked, tends to increase
in geometrical ratio while subsistence increases only ar-
ithmetically. This had far-reaching consequences in addi-
tion to the economic and social controversies which it
sparked. The essay was read by both Charles Darwin and
Alfred Russell Wallace, and provided them with the prin-
ciple of natural selection in the struggle for survival within
an otherwise exponentially growing population, and inspired
them independently to the theory of evolution. The science
of statistics (the word was taken from staatswissenschaft)
was still new, and Malthus suffered from a lack of statistical
material, so his aphorism could not be quantitatively for-
mulated through mathematical models (early population
inventories were seldom trustworthy, since they were taken
for purposes such as taxation, induction into military ser-
vice, and forced labor, and it was not in the individual’s best
interests to be counted, or to give correct information).
Malthus also discussed deviations from a purely geometrical
progression, citing periodic “sickly” periods which reduced
the population, only to be followed by periods of increased
fertility. The first mathematically analyzable collection of
social data was produced by Adolphe Quetelet3? in 1835.
Quetelet recognized quantifiable obstacles to indefinite
growth. His friend Pierre Verhulst3? discussed a mathe-
matical model in 1845, adding a quadratic retardation term
and obtained the s-shaped “logistic curve,” which differs
from exponential growth unless the linear term dominates.
This model will be discussed in more detail in Sec. VII
A.
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V. THE 17th CENTURY: FORMULATIONS

A. Development of logarithms

The seventeenth century brought forth the symbolic
notations and graphical representations which are the
framework of modern quantitative thought. However, the
development of logarithms occurred prior to and indepen-
dently of this framework, in purely numerical terms to
satisfy practical calculational needs. Thus while the exis-
tence of logarithms greatly aided later formulations of the
exponential function, the developers of logarithms did not
require or even possess the exponential function concept.3*
Construction of a table of logarithms involved computation
of very dense sets of paired arithmetical and geometrical
progressions and the recognition of their conjugate opera-
tions of addition and multiplication. Thus if we express the
first logarithms published by John Napier33 in 1614 in
modern symbolic notation, these Napierian logarithms
(Nap log) are defined by the relationship

x=q(1 —1/g)Narloex, (2

where Napier chose ¢ = 107. Our modern natural loga-
rithms (In) are instead defined

x= lim (14 1/g)dnx 3)
q large
and Napier’s logarithms are thus related to modern natural
logarithms by

Nap log x = In(1077x)/In(1 — 10~7). 4)

Note that Nap log x has no base (in the sense bNap log x >«
x) and the sum of the logarithms of two quantities is not
equal to the logarithm of the product of the two quantities.
Nevertheless, in seeking to expedite his numerical compu-
tations, Napier made important innovations which were
later utilized in the development of the exponential concept.
For example, Napier considered contributions of the order
of 1 part in 10'° to be negligible for his practical purposes,
and thus used the approximation (numerically, not in our
modern symbols)

107(] — 10—7)x+100
~ (1 =100 X 10-7)[107(1 — 10~7)*] (5)

which is the first term of the binomial expansion. Thus he
performed the equivalent of 100 successive multiplications
simply by moving the decimal point (which Napier himself
invented exactly for this purpose) five places to the left and
subtracting. In addition Napier interpolated between in-
teger numbers of successive products, not by extraction of
roots but by setting differences between elements in the
arithmetic progression proportional to ratios of the corre-
sponding elements in the geometrical progression. Thus
Napier used series expansion techniques, and viewed the
operation as a continuous, interpolatable, almost functional
process, essential ingredients of later exponential formu-
lations.

Although Napier’s first logarithms were not compatible
with modern definitions, the second edition of the English
translation of his Descriptio, made by Edward Wright and
published in 1618, contained an anonymous Appendix
(probably written by William Oughtred) containing the
first table of what we now call natural logarithms.3¢ Thus,
this marks the beginning of the concept of the quantity we
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now call (after Euler) e, the base of natural logarithms. An
extended table of natural logarithms was published by John
Speidell in 1622, but Napier and Henry Briggs had already
recognized the practical advantages of a set of logarithms
based upon the decimal system. Napier’s death in 1617 left
the task of calculation to Briggs, who completed it with his
Arithmetica Logarithmica in 1624. In contrast to the
methods of successive powers of a number close to unity
which were possible with Napier’s logarithms, Briggs was
forced to begin with the definitions log 10 = 1 and logl=
0, and interpolate to find other logarithms by tedious suc-
cessive extraction of roots. Thus the further development
of the concept of the number e was delayed until the later
introduction of infinite series methods.3’

B. Symbolic representation

The modern notation of a right superscript index to de-
note successive multiplication was introduced by René
Descartes in his La Géométrie in 1637. The French word
exposant or “index” became synonymous with this par-
ticular use of an index, and led to the terminology “expo-
nential.” The notation had advantages over those employed
earlier by Nicole Oresme (ca. 1323-1385). Nicolas Chu-
quet (~1484), Michael Stifel (~1544), Simon Stevin
(~1585), and others.38 Although Oresme used fractional
powers to denote roots and Chuquet used negative powers
to denote reciprocals and zero power to denote unity, the
presentation by Descartes used only integer powers. How-
ever, literal, fractional, and negative exponents were quickly
added to Descartes’ notation by Wallis, Newton, and others.
Despite the widespread use of this exponential notation
which followed, its relationship to the logarithm was not
utilized or even clearly recognized until the end of the 17th
century.

C. Graphical representation

Thus the development of concepts of the exponential and
logarithmic functions did not occur as a result of manipu-
lation of this symbolic notation, but involved geometrical
considerations of graphical representations of constructed
loci. The logarithmic spiral was discussed by Descartes in
these terms in a letter to Mersenne in 1638. About the same
time Descartes received a letter from a jurist named Flo-
rimond de Beaune asking, among other things, for the area
under a curve for which the ratio of the ordinate to the
subtangent is proportional to the difference between the
ordinate and the abscissa.3% Descartes’ answering letter of
1639 indicates that he was aware of some of the properties
of what we now call the exponential curve, but he did not
name the curve or mention the logarithm. The geometrical
properties of the exponential curve were probably first
studied by Evangelista Torricelli4® in around 1644, but the
term “exponential” was not associated with this curve until
much later. Torricelli proposed two names for this function:
the “hemihyperbola™ since it resembles a hyperbola but
possesses only one asymptote; and the “linea logarithmica
sive Neperiana™ because it could be constructed using
Napier’s logarithms. The latter was shortened to “loga-
rithmica” and was the accepted name for the inverse log-
arithm until well into the 18th century. Some historians
have incorrectly translated the word “logarithmica” as
“logarithm” rather than “exponential,” leading them to
underestimate the degree of understanding of these func-
tions in the latter half of the 17th century. Using only
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classical Greek geometry, Torricelli demonstrated that the
subtangent (the ratio of the ordinate to the slope) of this
curve is a constant. By approximating the curve by a geo-
metrical sequence of rectangles and using Eq. (1) he showed
that the area under the curve between two abscissas is the
difference between the ordinates multiplied by the sub-
tangent. Thus he stated in geometrical terms the differential
and integral properties of the logarithmica (exponential)
function. The emergence of the subtangent as the funda-
mental parameter describing this curve is particularly
noteworthy since we would today recognize it as the dis-
tance over which the curve falls to 1/e of its original value.
Torricelli also noted that the area under the semi-infinite
curve is given by the product of the initial ordinate and the
subtangent. Thus the subtangent on a time abscissa can be
regarded as the average time for the curve to fall to Zero,
or as we now call it, the mean life. Torricelli died in 1647,
leaving this manuscript unpublished [it was published in
1900 (Ref. 40)].

The findings of Torricelli were extended and publicized
by Christiaan Huygens during the period 1661-1690.4!
Although he did not specifically cite Torricelli, Huygens
adopted his terminology and called the function the “log-
arithmica” when he wrote in Latin and the “logarith-
mique” when he wrote in French. In a 1661 manuscript42
Huygens constructed the logarithmica (see Fig. 2) using
a halving geometrical progression interpolated with Briggs’
decimal base logarithms,*? and reexamined its geometrical
properties. His demonstration of the constancy of the sub-
tangent is particularly interesting, since it compares the
subtangent to the halving interval used in constructing the
curve. In units of the decimation interval he computed both
the subtangent (by finite differences) and the halving in-
terval. Using 18-place logarithms#3 he found their ratio to
be

subtangent _ 434294 481 903 251 804
halving interval 301 029 995 663 981 195

Thus Huygens’ proof contains the ratio of the mean life to
the half life (he suggested the rational approximation
13/9).

D. Physical application

Huygens studied the logarithmica as a mathematical
exercise in 1661, but in 166844 he found an application in
the gravitational fall of an object through a medium which
exerts a retarding force proportional to the velocity of fall
(see Fig. 3). Although Newton’s laws of motion and the
Newton-Leibniz calculus were not yet formulated, Huygens
obtained a geometrical solution by plotting the acceleration
versus the time, and computing the former point-by-point
by subtracting from g at each time abscissa an amount
proportional to the area under the curve up to that point.
In modern symbols this involves the solution to the (then
unformulated) Newton’s law equation

a(t) =g — K ﬁtdt/a(t’) 6)

by the finite sum approximation
n—1

a, =g — KAt Z;,) a;. (7)

Huygens easily recognized the resulting curve as the lo-
garithmica, and expressed the drag coefficient in terms of
the subtangent. He then undertook a series of experiments
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Fig. 2. Construction of the exponential
curve from a 1661 manuscript of Chris-
-tiaan Huygens. The equal segments AB,
BC, CD, etc., were set along the abscissa
and a doubling progression, AK, BF,
CG, etc., was erected thereupon. Hu-
ygens used this diagram to study the
subtangent and the quadrature of the
curve.

to verify the results. Unfortunately, for the situations he
measured he found that a velocity-squared dependence was
a better model. In 1669,%5 he attempted to repeat his geo-
metrical solution with a velocity-squared retarding force,
but found that the result was not as simple (the curve be-
comes a squared hyperbolic secant) and did not pursue it
further except to report his findings on the logarithmica and
viscous ballistics before a meeting of the Paris academy in
1669, and also as an Appendix?6 to his Traité de la Lumiére,
published in 1690. Thus the first printed account of the
logarithmic curve was probably that of James Gregory,4’
published in 1667. The work of Gregory was possibly not
independent of that of Torricelli, since Gregory had spent
the previous five years in italy in close contact with Torri-
celli’s pupil Stefano degli Angeli.*®4° In 1701 Guido
Grandi®® demonstrated in a more rigorous way the theorems
enunciated by Torricelli and Huygens.

E. Infinite series representation

The geometrical studies of Torricelli and Huygens
demonstrated many of the properties of a curve whose or-
dinates are given by the logarithmica of the abscissa, and
the computations of Napier and Briggs provided a numer-
ical relationship between a given number and its logarithm.
(Despite a tendency of historians to refer to it as the “log-
arithmic curve,” early graphical studies usually chose the
asymptote as the axis of the independent variable, as a
function of which it was properly an exponential or logar-
ithmica curve.) However, an analytical relationship by
which one could compute the ordinate given an arbitrary
abscissa or vice versa was still lacking. This was provided
by the development of an infinite series representation first
for the logarithm and then for its inverse, during the period
1664-1670.

Infinite series methods were being developed indepen-
dently by several workers during this period, with the ear-
liest efforts toward logarithms and their inverses probably
being due to Isaac Newton. In 1664-65 Newton generalized
the binomial series to include negative, noninteger, and li-
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teral powers, which he used to generate infinite series rep-
resentations for computations of roots, inverses, and qua-
dratures of (areas under) curves. Among the first examples
which he considered was the quadrature of the hyperbola
y =1/(1 + x). This he binomial-expanded and integrated
the resulting power series term by term, using the already
known formula for.the quadrature of a power curve. Thus
he obtained the area z as>!

z=x—x%2+x3/3-x¥4+ x3/5—---.  (8)

Gregory St. Vincent had already shown in 1647 that area
elements under this hyperbola between successive abscissas
are equal if the abscissa interval increases in a geometrical -
progression, and his pupil Alfons Anton de Sarasa had in
1649 interpreted this result to connect the hyperbola with
the logarithm of the abscissa.3?:53 Newton realized this>4
and used z = In(1 + x) to compute a number of logarithms
from Eq. (8).5> However, these calculations lay unpublished
among his notes until 1669, when he hurriedly assembled
them into his manuscript3¢ “De Analysi per Aequationes
Infinitas.” The reason for publication at this time was the
publication by Nicolaus Mercator (not the map maker) of
the booklet Logarithmotechnia in 1668. When Newton
received the booklet in September 1668 he was shocked>’
to find that it contained his reduction of In(1 + x) to an
infinite series (albeit by long division rather than by the
binomial expansion). Newton then hastened to prepare his
“De Analysi” which he communicated to Isaac Barrow in
July 1669. The manuscript not only contains Eq. (8), but
its inverse, achieved by neglecting terms higher than x> and
solving the resulting quintic equation to obtain

x=z+2z%2+23/6+ 2424+ 25/120+---. (9)

Newton correctly asserted that the denominator is a fac-
torial, thus generalizing his quintic solution. Although it
established Newton’s priority in many infinite series ex-
pansions, the manuscript was not wideiy circulated, and was
not actually published until 1711. However, word of these
series methods spread to Leibniz, who requested informa-
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Fig. 3. Geometrical formulation of the acceleration of a body which falls
under the combined influence of gravity and a velocity proportional re-
tarding force, from a 1668 manuscript of Christiaan Huygens. Huygens
computed the curve by subtracting from g at each point an amount pro-
portional to the area under the curve up to that point, and recognized the
resulting curve as the “logarithmica™ (exponential) which he had studied
earlier.

tion through Henry Oldenburg, then secretary of the Royal
Society. This resulted in two letters>® on this subject from
Newton to Leibniz through Oldenburg during 1676, both
of which contain Eq. (9), with the explanation of its deri-
vation appearing in the second letter. Although Newton
seems to have been the first to deduce Eq. (9), he did not
seem to recognize its significance, despite the fact that the
notes in his “Waste Book™ from 1664 show that he had in-
dependently rederived the curve of constant subtangent4®
(unaware of the work of Torricelli and Huygens) as the
“instantaneous compound interest” curve.>* Equation (9)
was presented merely as a convenient means of obtaining
a number given its logarithm.

In 1670 James Gregory>® had obtained a close relative
of Eq. (9) when he binomial-expanded the quantity

(1 +d/b)*/c = 1 + (afc)(d/b) + (a/c)(a/c — 1)(d/b)*/2
+ (a/c)(a/c = 1)(afc — 2)(d/b)3/6 ++-+ (10)
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which he applied to compound interest problems. Had he
set @ = b, z = djc, and taken the limit of very large a he
would have obtained Eq. (9) (plus one) without referring
to a hyperbolic area or to.a logarithm, a method used by
Halley in 1695.60

F. Calculus formulation

Although the connection between the logarithmica and
rate equations had in some sense been known since the
Sumerians and was quantitatively formulated in terms of
invariant subtangents by Torricelli and Huygens, the de-
velopment of the calculus of Newton and Leibniz in the
latter part of the 17th century provided the obvious context
for its investigation. In 1676 Leibniz6!:62 read the letter of
Descartes to de Beaune (then published) and found that the
resulting equation

dY/dX = (Y - X)/b (1n

could be transformed by the substitutionw =¥ — X — b to
the form

dw/dX = wb. (12)

This he then easily solved using the infinite series repre-
sentation of Eq. (9) (with x > w — 1 and z — X/b). It is
interesting to note that Leibniz had independently deduced
Eq. (9) before he received Newton’s letters through
Oldenburg (Newton’s letters were dated June 13 and Oc-
tober 24 of 1676, while Leibniz’ notes of May 17, 1676 show
his discovery of this equation®3). However, Leibniz’ state-
ment of the solution to the de Beaune problem illustrates
one of the reasons why knowledge of the exponential
function in the 17th century is often underestimated.
Leibniz stated that if w are numbers, X will be logarithms,
rather than the inverse (that w will be logarithmicas if X
are numbers). This tendency pervades the writings of
Leibniz, Newton, and others of their time, and is often
clumsy in physical applications in which the dependent and
independent variables correspond, respectively, to a mea-
sured and a controlled quantity and are not arbitrary in their
specification.

VL. THE 18th CENTURY: APPLICATIONS

The mathematical formulations of the logarithm and the
logarithmica developed during the 17th century provided
a means, not only to recognize exponential processes in
nature, but also to measure their rate constants. The results
of one measurement can then be used to predict the behavior
of another. Although Huygens’s attempts to describe an
object’s fall through a viscous medium did not agree with
his measurements, there are a number of 18th century ap-
plications which were well described by the exponential law,
and provide a useful context to follow the further develop-
ment of this concept.

A. Newton’s law of cooling

In 1701 Newton presented experimental results which
indicated that the temperature of a heated object ap-
proaches that of its surroundings approximately exponen-
tially in time. Newton published this papers4 anonymously
and in Latin and was perhaps purposefully enigmatic in his
mathematically archaic exposition. The paper was mainly
a description of the use of the cooling law to extend the
range of temperature measurements above those accessible
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to standard thermometers by placing various metals on a
heated iron and noting the cooling times at which the in-
dividual metals hardened. Newton stated in words that the
heat loss should be proportional to the total heat, and from
that deduced that the logarithm of the temperature should
change uniformly with time, and suggested the use of a table
of logarithms. Since time is the independent variable here,
the temperature is given in terms of the inverse logarithm
of the time, and it would have been more convenient to ex-
press-the relationship in terms of the logarithmica. Despite
his own considerable studies of this function 30 years earlier
and the published results of Huygens and others which were
available, Newton made no mention of the logarithmica or
its properties.

B. Bouguer’s law of absorption -

-An important example of an exponential process was
discovered by Pierre Bouguer® in his studies of the atten-
uation of light by translucent materials in 1729. Bouguer

illuminated adjacent surfaces by two identical light sources, -

one at a variable distance and the other with a translucent
substance interposed, and used his eye as a null detector to
establish equality of brightness. Correcting for the inverse
square law, he found that the light diminishes in geometrical
progression as the thickness of the translucent material
increases in arithmetic progression. Familiar with the work
of Huygens (whom he cited) and writing in French, he
stated that the light diminishes as the “logarithmique” of
the thickness of the absorber divided by a subtangent factor
which is characteristic of the material. He included the
infinite series representation for the logarithmique®s [Eq.
(9) above], but did not apply it to his actual numerical
calculations, using instead Napier’s logarithms to linearize
the dependence. He included a set of examples showing how
the subtangent could be deduced from experimental data
for a given material and applied to other situations.
Bouguer’s work was probably the last application of the
exponential to be published before the introduction of our
modern exponential notation, which was presented in
Leonhard Euler’s Introductio?® in 1748. Euler had begun
to use the letter e to represent the base of natural logarithms
in 1727,%6 and in his Introductio he made frequent use of
the equation , , A
z z 4 z
Tt G T xexs Tixexsxa
(13)
among other things, computing e to 23 decimal places. He
also established the inverse operations x = eZ and z = In x.
Euler also devised the complex exponential, and identified
the imaginary part with sinusoidal oscillations, making
possible the mathematical formulation of damped harmonic
motion. Euler’s notation and the nomenclature “exponen-
tial” were quickly adopted and the terms “logarithmique”
and “subtangent” were dropped from use in this context.
This is apparent if we consider the work of Johannes
Lambert,%7 who restudied and extended Bouguer’s work in
1760. Although he followed Bouguer’s formulation quite
closely he made no mention of the logarithmique or the
subtangent, using instead the Eulerian notation e?~, It is
interesting in this connection that many authors today refer
to Bouguer’s law as Lambert’s law (or even as Beer’s law
after the 1851 work of August Beer) as though the law had
been independently rediscovered by Lambert. Lambert
merely cited the well-known work of Bouguer and applied
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it to specific situations and had no intention of claiming
priority.

C. Prony’s method and the thermal properties of fluids

In 1795 Riche de Prony%® made a numerical analysis of
data recorded by other investigators concerning the pres-
sures, volumes, and temperatures of fluids. In some cases
he noted apparent exponential relationships, and analyzed
the data in terms of these functions. For example, he at-
tempted to fit the measurements by Betancourt of the
relation between temperature and vapor pressure to sums
of from two to four exponentials. In doing this, Prony de-
veloped a method (still in use) in which the problem is re-
formulated in terms of two sets of linear equations and a
single polynomial equation. The polynomial equation iso-
lates the nonlinearities and its roots determine the fitting
constants. The details of Prony’s work have recently been
reviewed by Bromage.%® Applications involving sums of
exponential functions became common in the nineteenth
century, and are discussed in Sec. VIL.

VII THE 19th CENTURY: DEPARTURES
FROM A PURE EXPONENTIAL

As increasingly broad classes of phenomena were found
to be well represented by the exponential law, small de-
partures from this behavior were observed, and refinements
in the mathematical models were developed in the 19th
century which could accommodate these results. The use
of linear rate equations is in some applications an approx-
imation, and deviations from linearity must be considered.
Even if the basic process is itself purely exponential in na-
ture, the observed effect may involve a sum of exponential
terms if several such processes are occurring simultaneously
or sequentially. Although the characteristic shape common
to all exponential functions simplifies analysis when seen
alone, these generic similarities make it extremely difficult
to disentangle the effects when several exponentials are seen
together. In modern exponential mean-life determinations
these effects are called “blending” and *“cascade repopu-
lation,” and considerable effort has been devoted to avoiding
and accounting for them during this decade? in fields such
as atomic and molecular physics and biology. However, this
problem had been formulated and the basic solutions had
been obtained over 100 years ago.

A. Nonlinearities: the Verhulst curve

As was mentioned in Sec. IV, Pierre Verhulst attempted
in 1838 to develop a mathematical model for the growth of
a biological population. He began with a linear Malthusian
rate equation, but added a quadratic retardation term to
account for the struggle for survival, obtaining

dp/dt = ap — bp2. (14)
This has the solution -
p(t) = [(1/p(0) — b/a)e~' + b/a]~! (15)

which approaches an exponential law when b/a is small, but
more generally is the s-shaped “logistic” curve. This curve
describes not only biological situations, but also wide classes
of nonlinear rate phenomena. The biological example
provides an excellent illustration of the linear rate as-
sumptions inherent in the exponential law, and their
breakdown, since its validity sets in when the Fibonacci
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series assumes nearly the “golden ratio” and ends as the
struggle for survival becomes the dominant dynamical
process.

B. Dampled oscillations: the Kelvin LRC circuit

The damped oscillatory motion which is possible for an
object possessing inertial mass and influenced by viscous
drag and a Hooke’s law linear restoring force is a rather
obvious example of the exponential law, and was un-
doubtedly considered by many early observers. The elec-
trical analog was studied by William Thompson®® (Lord
Kelvin) in 1853. Solving the differential equation

d?q/dt + 2a dg/dt + b2q = 0 (16)

he obtained
q(t) = q(0)e= cos[(b2 — a?)!/2t + ¢]. (17

He pointed out the three now familiar cases: a = b, pure
exponential decay; a < b, exponentially damped sinusoidal
oscillations; and @ > b, a sum of two exponentials.

C. Blending: the Becquerel phosphoroscope

In 1860 Edmond Becquerel’? (the father of the discoverer
of radioactivity) performed a series of measurements of the
decay times of luminescent phosphors. For this purpose he
had invented a device he called the “phosphoroscope,” in
which a phosphor is placed between two rotating disks with

-alternating opaque and light-transmitting sectors. Thus he
was able to chop both the exciting light falling on the sample
and the luminescent light it subsequently emitted, with an
adjustable delay time between them. By measuring the
luminescent intensity with a photocell as a function of delay
time, he was able to obtain the desired decay curves. By
determining the semilogarithmic slopes of these decay
curves he was able to deduce the luminescent mean lives
(he called them “coefficients d’extinction”) for all but a few
cases in which the semilogarithmic slope was not constant
over the entire curve. He then assumed that what he was
observing was a blend of two phosphors with two different
mean lives, and, at least in one case, was able to extract both
mean lives from the measured intensities / by adjusting the
constants ig, yo, @, and b in the formula”!

(18)

He commented that if the phosphor contains a large number
of groups of rays of unequal persistences the calculation
becomes too complicated to be compared with experiment
(a problem which still exists today, despite advances in
computational technology?). In some cases he found that
the data were not describable by either exponential or
multiexponential forms, but instead decayed in proportion
to the reciprocal of the time since excitation. He showed
that this situation would result if the decay rate were pro-
portional to the square of the amount present, which
suggests that a homogeneous collision driven mechanism
dominated in these cases.

I =ige=a + yge—bt,

D. Cascading: the Esson equations

The exponential nature of certain chemical reactions had
been reported already in 1850 by Ludwig Wilhelmy.”2 In
studies of the inversion of sugar by acids he had used a po-
lariscope to determine the reaction rate as a function of
time, and found that in an excess of acid the rate is pro-
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portional to the amount of sugar present. (This is called
“monomolecular change.” If the reaction is limited by the
amount present of more than one molecule, other equations
pertain.) He presented the differential equation, its expo-
nential solution, and determined the rate constants from
logarithmic differences. Another set of experiments was
carried out in 1865 by A. Vernon Harcourt and William
Esson”3 which, although similar to those of Wilhelmy,
contained some complications which exposed additional
properties of the exponential decay process. Harcourt and
Esson chose to study a chemical reaction which had easily
controllable conditions and which could be abruptly stopped
and its residual reactants accurately determined by chem-
ical analysis. In exchange for these advantages, they ac-
cepted the disadvantages that the process was complicated
by competing multistep reactions, with intermediate
products which behaved like the original reactants except
that their subsequent reaction proceeded with an additional
rate constant. The experimental work was carried out pri-
marily by Harcourt, who obtained a most perplexing group
of decay curves possessing a variety of nonexponential
humps and curvatures. The mathematical analysis of the
linear rate equations (and nonlinear rate equations, for cases
where other reactants were not in excess) was presented in
a very thorough and complete appendix by Esson. Esson
demonstrated that a reactant which has competing reaction
channels decays by the same exponential law as one which
has a single reaction mode, except that the exponential rate
constant becomes the sum of the partial rates to the various
modes. Thus all decay channels from the same parent decay
with the same mean life. He considered the decay scheme
shown in Fig. 4. Here a primary reactant «(z) simulta-
neously undergoes two reactions with rates « and 8. The
total rate constant is then o + 83, and, for an initial amount
u(0) = q,

Cu(t) =ae(«tB)

(19)

He next noted that a sum of exponentials can be obtained
in two distinct circumstances: when simultaneous inde-
pendent processes cannot be experimentally distinguished
(blending) as had been measured by Becquerel, and when
a multistep sequential process causes both the formation
and the decay of a reactant to proceed exponentially (cas-
cading). He solved the coupled rate equations for the se-
quential chain of reactions affecting the intermediate
reactant v(¢) in Fig. 4, which is formed with a rate 8 from
u(t) and undergoes a further reaction with rate v, and ob-
tained, assuming v(0) = 0, the Esson equation for a directly
cascaded level, .

(1) = {aB/[(a + B) — vljle™7" — e~(«*+A]  (20)

which exhibits the humped growing-in behavior which is
a possible feature of a sequential process [it does not occur,?
e.g.,ifv(0)/u(0) > B/(y — a — B8) > 0] Harcourt and Es-
son’s situation involved not only branching and cascading,
but also blending, since their analysis of the residues could
not distinguish between the primary and intermediate
reactants « and v, and yielded only their sum

u(t) +o(1) = a/[(a + ) — v]}

X [Be ¥+ (a— y)e («tB]  (2])

This implies either a monotonically decreasing (a = ) or
a humped growing-in (a < ) decay. By using various
temperatures and amounts of acid Harcourt and Esson
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Fig. 4. Schematic representation of the chemical reactions studied by
Harcourt and Esson in 1865. The chemical analysis of residues could not
distinguish between the primary and intermediate reactants, u(7) and v(?),
and only their sum was obtained, which involves all three rate constants
@, B, and v. Depending upon the relative values of the rate constants the

decay curve could be single exponential, a monotonically decreasing sum .

of two exponentials, or a humped growing-in difference between two ex-
ponentials.

obtained single exponential, double exponential monotonic,
“and double exponential growing-in decay curves, and de-
duced values for the exponential rate constants from their
measurements by a laborious numerical adjustment of the
constants a, «, 8, and v. However, they stated ‘that the
number and exactness of the data were not sufficient to
make the extracted rate constants more than approximate,
which frustrated their desire to determine the relationship
between rates and reactant concentrations.

‘E. Growing-in: the Walker ambiguity

Esson’s mathematical analysis was reexamined in 1898
by James Walker.”* Suppressing branching of u(z) by
setting m = a + 3 and 4 = af he rewrote Eq. (20) in the
form :

(1) = A [em/(m —y) +e~m/(y —m)] (22)

and recognized what we now call the growing-in ambigu-
ity,3 that is, Eq. (22) is completely symmetric in vy and m,
and it is not possible to determine from v(¢) alone which
process occurs first. He also suggested that if one of the
processes is very fast it could very easily be overlooked, since
its only influence would be for a very short time at the be-
ginning of the reactions. Thus the process could appear to
proceed with a single exponential rate constant corre-
sponding to the slower of the two sequential processes.

VIII. CONCLUSION

The perceptions and applications of the exponential law
which have been presented are by no means complete, and
many other pre-20th-century examples could be cited.
Further, the combined chronological and conceptual ex-
position which has been utilized here is more a convenient

" framework than a logical development, since exponential
properties seem to have been rediscovered independently
more often than they have been retrieved from previous
works. However, the examples presented do clearly dem-
onstrate that exponential change is a concept particularly
well suited to human comprehension, requiring little
mathematical sophistication and possessing a history of
which radioactive decay comprises a rather small and
unoriginal portion. ‘ :

905  Am. J. Phys., Vol. 46, No. 9, September 1978

ACKNOWLEDGMENTS

This study was made possible through the access to the
original books, periodicals, and other documents which was
provided by the libraries of the Royal Academy of Sciences
in Stockholm, of the University of Lund, and of the Uni-
versity of Uppsala. [ am very grateful to Maurice Lambert
of the Musée du Louvre for his generous help in the pho-
tographing of the cuneiform tablet, and to Dr. Gordon E.
Bromage for making his work available prior to its publi-
cation.

ICompare A. A. Bartlett, Am. J. Phys. 46, 876 (1978), R. K. Hobbie, ibid.
41, 389-393-(1973).

2g, Rutherford, Philos. Mag. 49, 1 (1900); 49, 161 (1900); cf. A. Pais,
Rev. Mod. Phys. 49, 925-938 (1977).

3L. J. Curtis, “Lifetime Measurements,” Chap. 3 in, Beam Foil Spec-
troscopy, edited by S. Bashkin (Springer-Verlag, Heidelberg, 1976),
pp. 63-109.

4The World of Mathematics, edited by J. R. Newman (Simon and
Schuster, New York, 1956), 4 volumes.

SE. J. Dijksterhuis, Archimedes (Ejnar Munksgaard, Copenhagen,
1956).

6Archimedes, “The Sand Reckoner,” mid-3rd century B.C. [An English
translation is given by Dijksterhuis in Ref. 5, pp. 360-73 and in Ref.
4, pp. 420-9].

7A. B. Chace, The Rhind Mathematical Papyrus (Mathematical As-
sociation of America, Oberlin, OH, 1927-29), 2 volumes.

30. Neugebauer, Mathematische Keilschrift-Texte (Springer-Verlag,
Berlin), Three parts: I, (1935); 11, (1935); 111, (1937).

90. Neugebauer, Die Grundlagen der dgyptischen Bruchrechnung
(Springer-Verlag, Berlin, 1926).

10A photograph, a drawn facsimile, a symbol transliteration, and an in-
terpretation of problem 79 of the Rhind papyrus have been given by
Chace [Ref. 7, vol. 1, p. 112 and Vol. 11, photographs XXV-XXVI].

1Compare O. Neugebauer, Ref. 9, pp. 14-15.

12Fjbonacci’s formulation was (cf. Chace, Ref. 7, Vol. 1, p. 134) “Septem
vetule vadunt romam; quarum quelibet habet burdones 7, et in quolibet
burdone sunt saculi 7; et in quolibet saculo panes 7, et quilibet panis
habet cultellos 7; et quilibet cultellus habet vagines 7. Queritus summa
omnium predictarum.”

13C. Wells, Every Child’s Mother Goose (New York, 1918).

18R 1. Gillings, Mathematics in the Time of the Pharoahs (MIT, Cam-
bridge, MA, 1972), pp. 165-170.

15A doubling progression is summed by a formula on Louvre cuneiform
Tablet AQ6484 from around 300 B.C. [cf. Neugebauer, Ref. 8, part I,
pp. 96-103 and part 11, plate I]. It is asserted by A. N. Singh[Osiris
1, 606 (1936)] that the Hindus knew the formula in the 4th century B.C.
and earlier.

16Compare A. B. Chace, Ref. 7, Vol. 1, pp. 159-160.

"Compare E. J. Dijksterhuis, Ref. 5, pp. 129-133 and pp. 336-345.

18R C. Archibald, Isis 26, 63-81 (1936).

190 ouvre tablet AO 6770. A transcription and interpretation is given by
Neugebauer in Ref. 8, part II, pp. 37-41, and a misinterpretation is
corrected in part I11, Chap. IV.

20Berlin tablets VAT 8521 and VAT 8528, described by Neugebauer in
Ref. 8, part I, pp. 351-367.

21G. T. Fechner, Elemente der Psychophysik, 1860. Fechner built his
formulation upon the suggestion of the “just noticeable difference” by
E. H. Weber in 1834. The work of Fechner is described in an article by
E. G. Boring in Ref. 4, pp. 1146-1166.

22George Sarton, A History of Science (Harvard U. P., Cambridge, 1966),
Vol. 11, pp. 520-521.

23W. Baade, Astrophys. J. 97, 119-127 (1943); 102, 309-317 (1945).

24G, R. Burbidge, F. Hoyle, E. M. Burbidge, R. F. Christy, and W. A.
Fowler, Phys. Rev. 103, 1145 (1956); also W. Baade, G. R. Burbidge,
F. Hoyle, E. M. Burbidge, R. F. Christy, and W. A. Fowler, Publ. As-

L. J. Curtis 905




tron. Soc. Pacific 68, 296 (1956).
25D, J. Struik, A Sourcebook in Mathematics, 1200-1800 (Harvard U.
P., Cambridge, MA, 1969).
26An English translation of the “paria coniculorum,” or “rabbit problem”
portion of Fibonacci’s Liber Abaci is given by Struik in Ref. 25, pp. 2,
3. An interesting recent reformulation of the Fibonacci problem asserts
that, by the time of the death of Abel, the number of descendents of
Adam and Eve could easily have exceeded a half million (M. Gardner,
Sci. Am., Sept. 1975, p. 174).
27The “golden section” has many interesting properties and a long his-
torical background [cf. Ref. 4, Vol. I, p. 82; R. C. Archibald, Am. Math.
Monthly 25, 232-238 (1918); and Gillings, Ref. 14, pp. 237-239].
28D’Arcy W. Thompson, On Growth and Form (Cambridge U.P., Cam-
bridge, 1942). .
291.eonhard Euler, /ntroductio in Analysin Infinitorum, 2 vols., Lausanne,
1748 (written 1745), Chap. 6 and 7.
30Robert Wallace (anonymously), A Dissertation on the Numbers of
Mankind in Ancient and Modern Times, Edinburgh 1753 (read before
the Philosophical Society at Edinburgh some years earlier).
31Thomas Malthus (anonymously), An Essay on the Principle of Popu-
lation as it Affects the Future Improvement of Society with Remarks
on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers,
J. Johnson in St. Paul’s Churchyard, London, 1798.
32] ambert-Adolphe-Jacques Quetelet, Sur I'homme et le Développment
de ses facultés, essai d’une physique sociale (Paris, 1835).
33pierre-Francois Verhulst, Correspondence Math. publie par M. A.
Quetelet 10, 113 (1838) and Nuov. Mem. Acad. R. Bruxelles 18, 1-38
(1845); 20, 1-32 (1847). '
34F, Cajori, “History of the Exponential and Logarithmic Concepts,” (in
seven installments) Am. Math. Monthly 20, 5-14, 35-47, 75-84,
107-117, 148-151, 173-182, 205-210 (1913).
35John Napier, Mirifici logarithmorum canonis descriptio Edinburgh,
1614); and Mirifici logarithmorum canonis constructio, 1619 (calcu-
lations probably were begun around 1590). An English translation of
selected portions of the 1619 work is given by Struik, Ref. 25. .
36U. G. Mitchell and M. Strain, “The Number e,” Osiris 1, 476-496
(1936).
37An interesting conjecture was put forth by Mitchell and Strain in Ref.
36. Since 7 occurs in the area of the ellipse and e occurs in the area under
a hyperbola, they suggest that our modern associations for these tran-
scendentals might be quite similar if the ancient Greeks had not, after
finding the areas of the ellipse and the parabola, failed in the quadrature
.of the hyperbola.
38F, Cajori, History of Mathematical Notations (Open Court, Chicago,
1928, 1929), two volumes.

39C. J. Scriba, “Zur Losung des 2 Debeauneschen Problems durch Des- -

cartes,” Arch. History Exact Sci. 1, 406-419 (1961).
40Torricelli’s manuscript “De Hemhyperbola logaritmica” was first
published in Bibliot. Math. (Dritte Folge) 1, 80-89 (1900) as part of
an article by G. Loria.
410euvres Complétes de Christiaan Huygens, edited by Société Hol-
landaise des Sciences 22 vols. (Nyhoff, The Hague, 1888-1950).
42Compare Oeuvres Huygens, Ref. 41, Vol. 14 (1920), pp. 460-473.
43Huygens’ source of 18 place base 10 logarithms was probably Henry
Briggs Arithmetica Logarithmica, 1st ed. (London, 1624).
44Compare Oeuvres Huygens, Ref. 41, Vol. 19 (1937), pp. 102-119.
45Compare Oeuvres Huygens, Ref. 41, Vol. 19 (1937), pp. 144-157.
46C. Huygens, “Discours de la cause de la Pesanteur” (an Appendix to

906 Am.J. Phys, Vol. 46, No. 9, September 1978

“Traité de la lumiere””) Chez Pierre Vander Aa Murchand Libraire,
Leiden, 1690, pp. 169-180.

41James Gregory, Geometriae Pars Universalis (Venetiae, 1667).

“8Compare D. T. Whiteside, Ref. 49, Vol. I, pp. 376-377, footnote 47.

49The Mathematical Papers of Isaac Newton, edited by D. T. Whiteside
(Cambridge U.P., London), Vol. 1 (1967), Vol. II (1968).

%0G. Grandi, “Geometrica demonstratio theorematum Huygeniorum circa
seu logarithmicam logisticam” Florence 1701.

51Photographs of two of Newton’s original scratch calculations from 1665,
with this expansion clearly legible, are given in the frontispiece and in
plate I (facing p. 122) of Whiteside, Ref. 49, Vol. 1.

52Compare D. T. Whiteside, Ref. 53, p. 221.

53D. T. Whiteside, “Patterns of Mathematical Thought in the Later
Seventeenth Century” Arch. History Exact Sci. 1, 179-388 (1961).

54Compare D. T. Whiteside, Ref. 49, Vol. I, pp. 457-462.

55A photograph of Newton’s calculation of xlog(1 £ 0.2) to 57 places is
given by Whiteside, Ref. 49, Vol. I, facing p. 186.

561, Newton, De Analysi per Aequationes numero terminorum infinitas,
1669, reprinted in Ref. 49, Vol. II, pp. 206-247.

57Compare D. T. Whiteside, Ref. 49, Vol. I, pp. 163-171.

8H. W. Turnbull, The Correspondence of Isaac Newton, Vol. 1l,
1676-1687 (Cambridge U. P., Cambridge, 1960), cf. letters 158, 160,
165,170, 171, 172, and 188.

59 James Gregory, letter of November 20, 1670 to John Collins. Translation
given by Struik, Ref. 25, pp. 290-291.

60Compare D. T. Whiteside, Ref. 53, p. 231. i

61G. W. Leibniz, Acta Eruditorum, 3, 467-473 (1684). Partial English
translations are given by Struik, Ref. 25, pp. 272-280 and by Smith,
Ref. 62, pp. 619-626.

62D, E. Smith, 4 Source Book in Mathematics (McGraw-Hill, New York,
1929), reprinted (Dover, New York, 1959). )

63Compare H. W. Turnbull, Ref. 58, p. 74, footnote 19.

64], Newton (anonymously), Philos. Trans. 270, 824-829 (1701). An
English translation is given ibid. 4, 572-575 (1809) and in W. F. Magie,

A Source Book in Physics (McGraw-Hill, New York, 1935), pp.

' 125-128.

65p. Bouguer, Essai d’Optique sur la Gradation de la lumiere (Chez
Claude Jombert, Paris, 1729).

$6Leonhard Euler, in the manuscript “Meditatio in Experimenta explos-
ione tormentorum nuper instituta” 1727 (or 1728), and in print in
Mechanica sive motus scientia analytice exposita (Saint Petersburg,
1736). An English translation of the 1727 manuscript is given by Smith,
Ref. 62, pp. 95-98.

67]. H. Lambert, Photometrica sive de Mensura et Gradibus Luminus,
Colorum et Umbrae (Augsburg, 1760).

68G.-F.-C.-M. Riche de Prony, “Essai Expérimentale et Analytique,” J.
Ecole Polytech. (Paris), 1 (2), 24-76 (1795). The modern use of Prony’s
method has been discussed by G. E. Bromage, M. J. French, and D. A, -
Long, Phys. Scr. (to be published) and the historical details of its for-
mulation have been reviewed by G. E. Bromage (unpublished).

69W. Thomson (Lord Kelvin), Philos. Mag. 5, 393-405 (1853).

79Edmond Becquerel, Ann. Chimie Phys. 62, 5-100 (1861).

7TICompare Edmond Becquerel, Ref. 70, p. 58.

72Ludwig Wilhelmy, Ann. Phys. Chem. 81, 413-532 (1850).

73A. Vernon Harcourt and William Esson, Proc. R. Soc. Lond. 14,
470-474 (1865); ibid. 15, 262-265 (1866) and Philos. Trans. R. Soc.
Lond. 156, 193-221 (1866); ibid. 157, 117-137 (1867).

74James Walker, Proc. R. Soc. Edinb. 22, 22-32 (1898).

L. J. Curtis 906




