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took into account the conservation of both energy and momentum in the
interaction between the electron and the X-ray photon.
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EINSTEIN

The Quantum Theory of Radiation

THE FORMAL SIMILARITY OF THE spectral distri-
bution curve of temperature radiation to Maxwell’s velocity distribution
curve is too striking to have remained hidden very long. Indeed, in the
important theoretical paper in which Wien derived his displacement law

p=1(3) 1)

he was led by this similarity to a farther correspondence with the radiation
formula. He discovered, as is known, the formula [Wien’s radiation
formula]

_
p= av’e FT (2 )
which is recognized today as the correct limiting formula for large values
of % Today we know that no consideration which is based on classical

mechanics and electrodynamics can lead to a useful radiation formula;
rather that the classical theory leads to the Rayleigh formula.

p:%mw (3)

After Planck, in his ground-breaking investigation, established his radia-
tion formula

1
p=er (4)
e — 1

! Albert Einstein, Physikalische Zeitschrift, 18 (1917), 121-128—trans. Editors.
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on the assumption that there are discrete elements of energy, from which
quantum theory developed very rapidly, Wien’s considerations, from which
formula (2) evolved, quite naturally were forgotten.

A little while ago I obtained a derivation, related to Wien’s original
idea, of the Planck radiation formula which is based on the fundamental
assumption of quantum theory and which makes use of the relationship
of Maxwell’s curve to the spectral distribution curve. This derivation de-
serves consideration not only because of its simplicity, but especially be-
cause it appears to clarify the processes of emission and absorption of
radiation in matter, which is still in such darkness for us. In setting down
certain fundamental hypotheses concerning the absorption and emission
of radiation by molecules that are closely related to quantum theory, I
showed that molecules with a distribution of states in the quantum theo-
retical sense for temperature equilibrium are in dynamical equilibrium
with the Planck radiation; in this way, the Planck formula (4) was ob-
tained in a surprisingly simple and general way. It was obtained from the
condition that the quantum theoretic partition of states of the internal
energy of the molecules is established only by the emission and absorption
of radiation.

If the assumed hypotheses about the interaction of matter and radiation
are correct, they will give us more than just the correct statistical partition
or distribution of the internal energy of the molecules. During absorption
and emission of radiation there is also present a transfer of momentum to
the molecules; this means that just the interaction of radiation and mole-
cules leads to a velocity distribution of the latter. This must clearly be
the same as the velocity distribution which molecules acquire as the result
of their mutual interaction by collisions, that is, it must coincide with the
Maxwell distribution. We must require that the mean kinetic energy which
a molecule (per degree of freedom) acquires in a Planck radiation field of
temperature T be

KT,
2’

this must be valid regardless of the nature of the molecules and independ-
ent of frequencies which the molecules absorb and emit. In this paper we
wish to verify that this far-reaching requirement is, indeed, satisfied quite
generally; as a result of this our simple hypotheses about the emission and
absorption of radiation acquire new supports.

In order to obtain this result, however, we must enlarge, in a definite
way, the previous fundamental hypotheses which were related entirely to
the exchange of energy. We are faced with this question: Does the molecule
suffer a push, when it absorbs or emits the energy ¢? As an example we
consider, from the classical point of view, the emission of radiation. If a
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body emits the energy e, it acquires a backward thrust [impulse] % if all the

radiation ¢ is radiated in the same direction. If, however, the radiation oc-
curs through a spatially symmetric process, for example, spherical waves,
there is then no recoil at all. This alternative also plays a role in the quan-
tum theory of radiation. If a molecule, in going from one possible quantum
theoretic state to another, absorbs or emits the energy e in the form of
radiation, such an elementary process can be looked upon as partly or
fully directed in space, or also as a symmetric (non-directed) one. It turns
out that we obtain a theory that is free of contradictions only if we con-
sider the above elementary processes as being fully directed events; herein
lies the principal result of the considerations that follow.

FUNDAMENTAL HYPOTHESES OF THE
QUANTUM THEORY—-CANONICAL
DISTRIBUTION OF STATES

According to the quantum theory, a molecule of a definite kind may,
aside from its orientation and its translational motion, be in one of only
a discrete set of states Zy, Z,, . . . . Z, . . . whose (internal) energies
ar€ e;, €2, . . . . ¢ . . . If the molecules of this kind belong to a gas of
temperature T, then the relative abundance W, of the state Z, is given
by the statistical mechanical canonical partition function for states

en

W, = p.e *T €))

In this formula k = % is the well-known Boltzmann constant, p,, a number

that is independent of T and characteristic of the molecule and the state,
which we may call the statistical “weight” of the state. Formula (5) can
be derived from the Boltzmann principle or purely from thermodynamics.
Equation (5) is the expression of the most far-reaching generalization of
the Maxwellian distribution of velocities.

The latest important advances in quantum theory deal with the theo-
retical determination of the quantum theoretical possible states Z, and
their weights p,. For the principal part of the present investigation, it is
not necessary to have a more detailed determination of the quantum
states.

HYPOTHESES ABOUT THE ENERGY
EXCHANGE THROUGH RADIATION

Let Z, and Z,, be two possible quantum theoretical states of a gas mole-
cule whose energies ¢, and «,, respectively, satisfy the inequality

€m > €,
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Let the molecule be able to pass from the state Z, to the state Z,, by ab-
sorbing the radiation energy ¢, — ,, similarly let the transition from state
Z, to the state Z, be possible through the emission of this amount of
energy. Let the radiation emitted or absorbed by the molecule for the
given index and combination (m, n) have the characteristic frequency ».

We now introduce certain hypotheses about the laws which are decisive
for these transitions. These hypotheses are obtained by carrying over the
known classical relations for a Planck resonator to the unknown quantum
theoretical relations.

Emission

A Planck resonator that is vibrating radiates energy, according to
Hertz, in a known way independently of whether it is stimulated by an
external field or not. In accordance with this, let a molecule be able to pass
from the state Z, to the state Z, with the emission of radiant energy
en — €, Of frequency v without being excited by any external cause. Let
the probability dW for this to happen in the time df be

dW = A,rdt 4)

where A4,," is a characteristic constant for the given index combination.

The assumed statistical law corresponds to that of a radioactive reac-
tion: that elementary process of such a reaction in which only y-rays are
emitted. We need not assume that this process requires no time; this time
need only be negligible compared to the times which the molecule spends
in the states Z,, and so on.

Incident Radiation

If a Planck resonator is in a radiation field, the energy of the resonator
changes because the electromagnetic field of the radiation does work on
the resonator; this work can be positive or negative depending on the
phases of the resonator and the oscillating field. In accordance with this,
we introduce the following quantum theoretical hypothesis. Under the ac-
tion of the radiation density p of the frequency v a molecule in state Z,
can go over to state Z,, by absorbing the radiation energy e, — ¢, in ac-
cordance with the probability law

dW = B,™pdt (B)
In the same way, let the transition Z,, — Z, under the action of the ra-
diation also be possible, whereby the radiation energy e, — e, is emitted

according to the probability law

dW = B,"pdt (B)




892 ATOMIC THEORY DEVELOPS

B,™ and B,," are constants. We call both processes “changes of states
through incident radiation.”

The question presents itself now as to the momentum that is transferred
to the molecule in these changes of state. We begin with the events
associated with incident radiation. If a directed bundle of rays does work
on a Planck resonator, then an equivalent amount of energy is removed
from the bundle. This transfer of energy results, according to the law
of momentum, to a momentum transfer from the beam to the resonator.
The latter therefore experiences a force in the direction of the ray of
the radiation beam. If the energy transferred is negative, the force acting
on the resonator is opposite in direction. In the case of the quantum
hypothesis, this clearly means the following. If, as the result of incident
radiation, the process Z, — Z,, occurs, then an amount of momentum

€m €n

c

is transferred to the molecule in the direction of propagation of the
bundle of radiation. If we have the process Z,, = Z, for the case of
incident radiation, the magnitude of the transferred momentum is the
same, but it is in the opposite direction. If a molecule is simultaneously
exposed to many bundles of radiation, we assume that the total energy
em — €, is taken from or added to just one of these bundles, so that even
in this case the momentum

€m — €

c

is transferred to the molecule.

In the case of emission of energy by radiation by a Planck resonator,
there is no net transfer of momentum to the resonator because, according
to classical theory, the emission occurs as a spherical wave. However, we
have already noted that we can arrive at a contradiction-free quantum
theory only if we assume that the process of emission is a directed one.
Every elementary process of emission (Z,, — Z,) will then result in a
transfer to the molecule of an amount of momentum

€m €n

c

If the molecule is isotropic, we must take every direction of emission as
equally probable. If the molecule is not isotropic, we arrive at the same re-
sult if the orientation changes in a random way in the course of time. We
must, in any case, make such an assumption also for the statistical laws
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(B) and (B’) for incident radiation since otherwise the constants B,™ and
B, would have to depend on direction, which we can avoid by assuming
isotropy or pseudo-isotropy (through setting up temporal mean values).

DERIVATION OF THE PLANCK
RADIATION LAW

We now enquire about those effective radiation densities p which must
prevail in order that the energy exchange between molecules and radiation
as a result of the statistical laws (A), (B) and (B’) shall not disturb the
distribution of molecular states present as a consequence of equation
(5). For this, it is necessary and sufficient that on the average, per unit
time, as many elementary processes of type (B) take place as processes
(A) and (B’) together. This condition gives as a result of (5), (A), (B),
(B”), for the elementary processes corresponding to the index combina-
tion (m, n) the equation

€n

_ L
Dn€ kT BnmP = pme kT (anP +Amn)

If, further, p is to become infinite as T does, the constants B,™ and
B, must satisfy the relation

PnBu™ = pmBy® (6)

We then obtain as the condition for dynamical equilibrium the equation

— Amn/Bm"
p= Em —€n (7)
e T —1

This is the dependence of the radiation density on the temperature that
is given by the Planck law. From the Wien displacement law (1) it then
follows immediately that

. ®
and
€n — € — hv (9)

where o« and % are universal constants. To obtain the numerical values of
« and & we must have an exact theory of electrodynamic and mechanical
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processes; we content ourselves for the moment with the Rayleigh law in
the limit of high temperatures, where the classical theory is valid in the
limit.

Equation (9) is, as we know, the second principal rule in Bohr’s theory
of spectra, about which we may assert, following upon Sommerfeld’s and
Epstein’s completion of the theory, that it belongs to the most fully verified
domain of our science. It also contains implicitly the photochemical
equivalent law, as I have already shown.

METHOD FOR CALCULATING THE MOTION
OF MOLECULES IN RADIATION FIELDS

We now turn our attention to the investigation of the motion imparted
to our molecules by the radiation field. We make use in this of a method
that is known to us from the theory of Brownian motion and which I
have often used in investigating motions in a region containing radiation.
To simplify the calculation, we shall carry it through for the case in
which the motion occurs only along the X-direction of the coordinate sys-
tem. We further content ourselves with calculating the mean value of the
kinetic energy of the translational motion, and thus dispense with proof
that these velocities v are distributed according to the Maxwell law. Let
the mass M of the molecule be large enough so that higher powers of

v .
5 can be neglected relative to lower ones; we can then apply the usual

mechanics to the molecule. Moreover, without any loss in generality, we
may carry out the calculation as though the states with indices m and n
were the only ones the molecule can be in.

The momentum Mv of a molecule undergoes two kinds of changes in
the short time r. Even though the radiation is the same in all directions,
the molecule, because of its motion, will experience a resistance to its
motion that stems from the radiation. Let this opposing force be Rv,
where R is a constant to be determined later. This force would ulti-
mately bring the molecule to rest if the randomness of the action of the
radiation field were not such as to transfer to the molecule a momentum
A of alternating sign and varying magnitude; this random effect will, in
opposition to the previous one, sustain a certain amount of motion of the
molecule. At the end of the given short time r the momentum of the
molecule will equal

MV—RVT+A

Since the velocity distribution is to remain constant in time, the mean of
the absolute value of the above quantity must equal that of the quantity
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My; thus, the mean values of the squares of both quantities averaged
over a long time or over a large number of molecules must be equal:

(Mv — Rvr + A)2 = (Mv)?

Since we have taken into account the influence of v on the momentum
of the molecule separately, we must discard the mean value vA. On de-
veloping the left-hand side of the equation we thus obtain

A% = 2RMv (10)

The mean value v? which the radiation of temperature T by its inter-
action imparts to the molecule must just equal the mean value vZ which the
gas molecule acquires at temperature 7' according to the gas law and the
kinetic theory of gases. For otherwise the presence of our molecules
would disturb the thermal equilibrium between thermal radiation and an
arbitrary gas of the same temperature. We must therefore have

5 =5 1)

Equation (10) thus goes over into

Il

= 2RkT (12)

T

The investigation is now to be carried through as follows. For a given
radiation density (p(v)) we shall be able to compute A% and R by means
of our hypotheses about the interaction between radiation and molecules.
If we put this result into (12), this equation will have to be identically
satisfied when , is expressed as a function of v and T by means of
Planck’s equation (4).

COMPUTING R

Let a molecule of the given kind be in uniform motion with speed v
along the X-axis of the coordinate system K. We inquire about the
momentum transferred on the average from the radiation to the molecule
per unit time. To calculate this we must consider the radiation from a
coordinate system K’ that is at rest with respect to the given molecule.
For we have formulated our hypotheses about emission and absorption
only for molecules at rest. The transformation to the system K’ has often
been performed in the literature. Nevertheless, I shall repeat the simple
considerations here for the sake of clarity.
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Relative to K the radiation is isotropic, that is, the quantity of radiation
in a solid angle dk in the direction of the radiation in a frequency range
dvis

pdv 55 (13)

where p depends only on the frequency » but not on the direction of the
radiation. This special beam vorresponds to a special beam in the system
K’ which is also characterized by a frequency range dv’ and a solid angle
d«’. The volume density of this special beam is

di«’ ’
o (N T (13

This defines p’. It depends on the direction of the radiation which, in
the familiar manner, is defined by the angle ¢’ it makes with the X’ axis
and which its projection on the Y’, Z’ plane makes with the Y’ axis. These
angles correspond to the angles ¢ and y which in an analogous manner
determine the direction of dk in K.

To begin with, it is clear that the same transformation law between
(13) and (13’) must hold as between the amplitudes A2 and A’2 of a
plane wave moving in the corresponding direction. Hence, to our desired
approximation we have

p’(v’,d)’)dv’dk’ o K
—_—p(v)dvdk =1-2 ¢ Cos ¢ (14)
or
1P gy — dV dx _ X ’
p(l’,(ﬁ)—p(v)d—v,'d—’(,<l 2CCOS¢> (14)

The relativity theory further gives the formulae, valid to the desired
approximation,

v'=v<1 —Kcos¢) (15)
c
, v . v '
cos ¢ :cos¢>——g—|—zcos2¢ (16)
v =y 7)

From (15) it follows, to the same approximation, that

v=1y (1 —}—;cos ¢’>.
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Hence, again to the desired approximation

p(v) =p (v’—l—%v’cos ¢>’>
or

P03 = p0/) + 2L (¥ cos #) (18)

Further, according to (15), (16), and (17)
dv _ v ’

= <1 —f—Ecos ¢>

dk _sin ¢’ d¢’ dy _ d(cos¢)

de " singdedy T d(cos¢’)

v ’
I—ZEcos¢

As a result of these two equations and equation (18), equation (14’)
goes over into

J, ) = [(,,),,Jrg/ cos ¢’ (g—’v’)y] (1 ~32cos ¢'> (19)

With the aid of (19) and our hypotheses about the radiation from and
radiation onto molecules, we can easily calculate the average momentum
transferred to the molecule per unit time. Before we can do this, however,
we must say something to justify our procedure. It may be objected that
equations (14), (15), (16) are based on Maxwell’s theory of the electro-
magnetic field that is not consistent with the quantum theory. This ob-
jection deals, however, more with the form than with the substance of the
problem. For, no matter how the theory of electromagnetic processes may
be formulated, in any case the Doppler principle and the law of aberration
still remain, and hence also the equations (15) and (16). Moreover, the
validity of the energy relationship (14) certainly extends beyond that of
the wave theory; this transformation law is also valid, for example, ac-
cording to relativity theory, for the energy density of a mass of infinitesi-
mally small rest density that is moving with the [quasi-] speed of light.
We may therefore assert the validity of equation (19) for any theory of
radiation.

The radiation belonging to the solid angle dx” would, according to (B),
give rise to ‘

(.7 /d,
Bﬂmp(l”d’)ir_

elementary processes per second of radiation events of the type Z,—
Zy, if the molecule after each such process immediately returned to state
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Z,. Actually, however, the time of lingering in state Z,, according to (5),
is

1 _
gpne kT

where we have used the abbreviation

S=pe *+pue ¥ (20)
The number of these processes per second is therefore actually

1 - ';:_; m (.0 4/ dx’

Spne Bn P(V7¢)47r'
In each of these elementary processes the momentum

€m — €p ’
— COS
P ¢

is transferred to the molecule in the direction of the X’-axis. In an analo-
gous manner we find, based on (B’) that the corresponding number of
elementary processes of radiation events of type Z, — Z, per second is

1 - % nte s g ax’
gpme BMP(VH#)E
and in each such elementary process the momentum
€m

— e ,
— =—=¢08
p ¢

is transferred to the molecule. The total momentum transferred to the
molecule per unit time by incident radiation is, keeping in mind (6) and

9,
_h_v,_ m —-ﬂ__ —% f Yy ’Edi,
S p.B. <e KT — e ) o’ (v, ¢’)cos ¢ .

where the integration is to be taken over all solid angles. Carry this out,
and we obtain with the aid of (19) the value

- this (p - (%)vi—ﬁ) PuB.™ <e_ﬁ —e k—';) v.
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Here we have represented the effective frequency again with » and not
with /. This expression gives, however, the total momentum transferred
on the average to a molecule moving with speed v. For it is clear that
those elementary processes of emission of radiation not induced by the
action of the radiation field have no preferred direction as seen from sys-
tem K’ and hence, on the average, cannot transfer any momentum to the
molecule. We thus obtain as the final result of our considerations

_hv 1/ ap m_;_;' __kh—;'
R—*ﬁ —/31,3—1/ p,,B,,e 1 —e (21)

CALCULATING a?

It is much easier to calculate the random effect of the elementary
processes on the mechanical behavior of the molecule. For we can cal-
culate this for a molecule at rest for which the approximation which we
have been using applies.

Let some event cause the momentum A to be transferred to a molecule
in the X direction. This momentum is to be of varying magnitude and di-
rection from moment to moment. However, let A obey a statistical law
such that its average value vanishes. Then let A1, A2 . . . be the momenta
which are transferred to the molecule in the X-direction by various operat-
ing causes that are independent of each other so that the total momentum
that is transferred is

A =3,

We then have (if for the individual A, their mean values A, vanish)

A? = 3,2 (22)

If the mean values X,2 of the individual momenta are all equal to each

other (=A%) and if  is the total number of processes giving rise to mo-
menta, we have the relation

AT=DZ (22a)

According to our hypothesis, in each process of incident radiation and
outflowing radiation, the momentum

_ hy
)\—?cos¢
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is transferred to the molecule. Here ¢ is the angle between the X-axis and
some randomly chosen direction. Hence, we obtain

Since we assume that all the elementary processes that are present are
to be considered as events that are independent of each other, we may
apply (22a); I is then the number of all elementary processes that occur
in the time r. This is twice as large as the number of radiation-incident
processes Z, — Z,, in the time r. We thus have

En

I= % paB.me T pr (24)

From (23), (24) and (22) we thus obtain

A% _ 2 (hy\? ~ g
723—5-;(?1’) panme kTp (25)

RESULTS

In order now to show that the momenta transferred from the radiation

to the molecule according to our basic hypotheses never disturb the
2
thermodynamic equilibrium, we need only introduce the values for A%
.

and R calculated in (25) and (21) respectively after the quantity

<P — (%) Z—Z) <1 — e‘%)

in (21) is replaced by

ohy
3RT

from (4). We then see that our fundamental equation (12) is satisfied
identically.

The above consideration lends very strong support to the hypotheses
introduced earlier for the interaction between matter and radiation by
means of absorption and emission, and through incident and outgoing
radiation. I was led to these hypotheses in trying to postulate in the sim-
plest possible way a quantum behavior of molecules that is analogous to
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the Planck resonators of classical theory. We obtained, without effort,
from the general quantum assumption for matter, the second Bohr rule
(equation (9)) as well as Planck’s radiation formula.

Most important, however, appears to me the result about the mo-
mentum transferred to the molecule by incoming and outgoing radiation.
If one of our hypotheses were altered, the result would be a violation of
equation (12); it appears hardly possible, except by way of our hypoth-
eses, to be in agreement with this relationship which is demanded by
thermodynamics. We may therefore consider the following as pretty well
proven.

If a beam of radiation has the effect that a molecule on which it is inci-
dent absorbs or emits an amount of energy Av in the form of radiation by
means of an elementary process, then the momentum hv/c is always trans-
ferred to the molecule, and, to be sure, in the case of absorption, in the
direction of the moving beam and in the case of emission in the opposite
direction. If the molecule is subject to the simultaneous action of beams
moving in various directions, then only one of these takes part in any
single elementary process of incident radiation; this beam alone then de-
termines the direction of the momentum transferred to the molecule.

If, through an emission process, the molecule suffers a radiant loss of
energy of magnitude Ay without the action of an outside agency, then this
process, too, is a directed one. Emission in spherical waves does not occur.
According to the present state of the theory, the molecule suffers a recoil
of magnitude Av/c in a particular direction only because of the chance
emission in that direction.

This property of elementary processes as expressed by equation (12)
makes a quantum theory of radiation almost unavoidable. The weakness
of the theory lies, on the one hand, in its not bringing us closer to a union
with the wave theory, and, on the other hand, that it leaves the time and
direction of the elementary processes to chance; in spite of this, I have
full confidence in the trustworthiness of this approach.

Only one more general remark. Almost all theories of thermal radiation
rest on the considerations of the interaction between radiation and mole-
cules. But, in general, one is satisfied with dealing only with the energy
exchange, without taking into account the momentum exchange. One feels
justified in this because the momentum transferred by radiation is so small
that it always drops out as compared to that arising from other dynamical
processes. But for the theoretical considerations, this small effect is on an
equal footing with the energy transferred by radiation because energy
and momentum are very intimately related to each other; a theory may
therefore be considered correct only if it can be shown that the momentum
transferred accordingly from the radiation to the matter leads to the kind
of motion that is demanded by thermodynamics.



