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Abstract
In atomic systems for which the total oscillator strength of excitations from the
ground state is dominated by the transition to the lowest resonance level, the
f -sum rule provides a bracketing inequality connecting the lifetime τ of that
level to the dipole polarizability αd . This relationship has been used previously
to deduce αd from τ . It is shown here that improved spectroscopic accuracies
now permit this procedure to be inverted, with τ deduced from a value for
αd obtained spectroscopically using the core polarization model. A similar
quantitative relationship exists connecting the nonadiabatic correlation factor
β to τ , and thus also to αd . The method is applied to a recent measurement
of αd for Kr6+ to obtain the values τ (4s4p 1P1) = 0.096 ± 0.003 ns and
β(Kr6+) = 1.71 ± 0.03a5

0 . It is shown that the use of this method to make
precision lifetime determinations for a small number of ions in an isoelectronic
sequence permits the exploitation of observed semiempirical regularities to
specify the lifetimes of all ions in that sequence.

1. Introduction

Dipole polarizabilities αd have long been determined from spectroscopic studies of high
Rydberg states, interpreted in the context of the core polarization model [1]. Through the
study of the energy levels of high n and � states, the effective polarizabilities of the core (one
stage of ionization higher than the Rydberg ion) can be extracted.

In systems for which the oscillator strength of excitations from the ground state is
dominated by the lowest-lying resonance transition, an alternative method can be used to
determine αd . Using a relationship that connects oscillator strengths and excitation energies
with αd and invoking the f -sum rule, an inequality can be established. If the dominant
resonance transition is unbranched, the value of αd can be tightly bracketed using a precision
measurement of the lifetime τ of that transition (e.g. [2–4]). Similar relationships connect the
nonadiabatic correlation factor β (a measure of the inability of the core to follow the motion
of the outer electron), which allow this quantity to be specified in the same manner.
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This paper demonstrates that improved spectroscopic accuracies now permit the
spectroscopic and time-resolved methods to be coupled, and the bracketing procedure inverted.
Thus a precision spectroscopic determination of αd using the core polarization model is used
to deduce τ , and that result is then used to evaluate β.

2. Formulation

As an illustrative example of this approach, consider the resonance transitions for ions in
the Zn isoelectronic sequence. This system has a 4s2 1S0 ground state outside a filled 3d10

Ni-like core. The oscillator strength for the ground-state excitation series 4s2 1S0− 4snp 1Po
1

is dominated by the strong, low-lying (�n = 0) n = 4 transition. The dipole polarizability
of these ions will influence the energy levels of high Rydberg states in atoms and ions of the
adjacent Ga isoelectronic sequence, from which αd can be deduced using the long-range core
polarization model [1].

2.1. Bracketing inequalities

The value for αd for the ground state of a Zn-like ion can be related to the oscillator strengths
f4s,np and transition energies E4s,np for the 4s2 1S0–4snp 1Po

1 Rydberg series through the
relationship [5]

αd =
∑

n

′ f4s,np

E2
4s,np

, (1)

expressed here in atomic units (energies in Hartrees, lengths in Bohr radii a0). The prime on
the summation indicates that this also includes an integral over continuum states. The f -sum
rule [6, 7] provides the additional relationship

Ne =
∑

n

′
f4s,np (2)

where Ne is the number of active electrons.
For ions with ns and ns2 ground states, the oscillator strength of the lowest resonance

transition often dominates the sum [3] in equation (2). A possible explanation for this fact
involves strong cancellation effects that can occur in the line strength factor for �n �= 0
transitions, but not for the �n = 0 transition [8]. Since the lowest resonance transition is
unbranched, its oscillator strength can be specified from lifetime measurements alone, with
no need for branching fraction data. The f -sum rule provides a value for the remaining
summed oscillator strength, and the second resonance level 4s5p 1Po

1 provides a lower bound
to subsequent excitation energies. This yields a bracketing inequality [9]

f4s,4p

E2
4s,4p

� αd � f4s,4p

E2
4s,4p

+
Ne − f4s,4p

E2
4s,5p

. (3)

This expression has been used to specify values and uncertainty limits for αd from measured
lifetime values [2–4]. However, the relationship can also be inverted to yield a bracketing
inequality for the oscillator strength

αdE
2
4s,5p − Ne

E2
4s,5p

/
E2

4s,4p − 1
� f4s,4p � αdE

2
4s,4p. (4)

In addition to adiabatic correlations such as αd , there are also relationships connecting
oscillator strengths to other quantities such as the lowest order nonadiabatic correlation β [10].
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In long-range interactions of a Rydberg ion, this quantity is a measure of the inability of the
core to instantaneously follow the motion of the outer electron. It is defined (in au) as

β = 1

2

∑
n

′ f4s,np

E3
4s,np

. (5)

By the same arguments that were presented above for αd , the quantity β has the bracketing
inequality

f4s,4p

E3
4s,4p

� 2β � f4s,4p

E3
4s,4p

+
Ne − f4s,4p

E3
4s,5p

. (6)

After the measured value for αd has been used to deduce f4s4p, the process can be reversed to
prescribe the value for β.

3. Quantitative application

As a numerical application of this approach, consider the recent measurement by Lundeen
and Fehrenbach [11] of a precise (1.5%) value of αd for Zn-like Kr6+. This was done using
high-resolution spectroscopy of high Rydberg levels of Kr5+, interpreted in the context of the
long-range core polarization model [1].

The lifetime of the 4s4p 1Po
1 level is particularly interesting because its measurement by

decay curve analysis is complicated by heavy cascade repopulation. Early measurements
using multiexponential curve fitting yielded a value 0.19 ± 0.02 ns [12, 13]. A later
measurement that used the ANDC method [14] to make a correlated analysis of the primary
and cascade decay curves yielded a value 0.101 ± 0.010 ns [15]. However, a subsequent
study [16] suggested that one of the lines attributed to a relevant cascade channel may have
been misidentified. While the inherent stimulus-response correlation between the cascade
and primary decay curves makes misidentification in a successful ANDC analysis extremely
unlikely, an independent determination of this lifetime could also confirm the identification.
Theoretical calculations have yielded values 0.0991 ns [17] and 0.0953 ns [18].

The expressions developed in the previous section can be applied to this new measurement
of αd for Kr6+. Values for the n = 4 and 5 energies are available (E4s,4p = 0.778 382 au
[19] and E4s,5p = 2.267 961 au [16]), and Lundeen and Fehrenbach [11] provide the value
αd = 2.69 ± 0.04a3

0 .

3.1. Evaluation of the f-sum rule

The only remaining unknown is Ne, which can be expected to be close to two, the number of
out-of-shell 4s2 electrons in the ground state. There could also be small additional contributions
from the closed-shell 3d10 Ni-like Kr8+ inner core. However, the Kr8+ ion is relatively rigid,
with a calculated polarizability αd = 0.2021a3

0 [20]. To account for the possibility of an inner
core contribution to the oscillator strength of Kr6+, denote

Ne = 2 + �Ne (7)

where �Ne is a small fraction. For example, in studies of the f -value sums for Mg+ and Ca+

[3], values �Ne ≈ 0.1 were obtained.
Another consideration that could affect the validity of the f -sum rule is the degree to

which intermediate coupling produces singlet–triplet mixing between the 4s4p 1Po
1 and 3Po

1
levels. This can be investigated by extracting the mixing amplitudes from the measured energy
spacings [21] among the 4s4p 3Po

2,
3Po

1,
1Po

0 levels (0.534 853 au, 0.547 192 au, 0.576 662 au)
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and the 4s4p 1Po
1 level (see above). Since there are three intervals and only two amplitudes,

the system is overdetermined. The two normalized amplitudes can be expressed as a single
mixing angle θ . A solution involving only two of the splittings (taking the average energy of
the J = 1 levels) is given by

cot(2θ) = ± 1√
2

[
3
(

3Po
1 + 1Po

1 − 23Po
0

)
(

3Po
2 − 3Po

0

) − 1

]
(8)

(here the energy levels are designated by their spectroscopic symbols). This yields a value
tan θ = 0.0857 which, combined with the ratio of the 3Po

1 and 1Po
1 excitation energies,

indicates that singlet–triplet mixing decreases the oscillator strength of the resonance line
by only 0.52%. Checking the overdetermination, the mixing amplitudes obtained from
equation (8) reproduced the 1Po

1–3Po
1 splitting to within 0.082%, consistent with the assumption

of a pure single configuration.

3.2. Determination of the oscillator strength and lifetime

Inserting equation (7) and the values for E4s,4p, E4s,5p and αd into equation (4),

1.5804 − 0.1335�Ne � f4s,4p � 1.6298. (9)

As can be seen from equations (3) and (6), Ne affects only the upper bound on the bracketing
of αd and β. Since equation (4) is an inversion of equation (3), only the lower bound of f4s,4p

is affected by Ne. Thus there is a slight downward shift with increasing �Ne for the lower
bound of f4s,4p. For �Ne = 0.1, the lower bound shifts from 1.5804 to 1.5670, a 0.85%
reduction. If we accept this as a reasonable value for �Ne, the inequality becomes

1.5670 � f4s,4p � 1.6298, (10)

which has a centroid f4s,4p = 1.598 and a spread of ±0.031, or 2%. Since this determination
involves inequalities rather than equalities, this value for f4s,4p was inserted into equation (3)
to test reciprocity. This recovered a value for αd of 2.687 a3

0 , consistent within the tight
bracketing of the inequalities. Tests using �Ne = 0 and 0.2 were also made, which shifted
the value of f4s,4p by only ± 0.007.

If the bracketing half-width is combined in quadrature with the 1.5% uncertainty in the
measurement of αd , the value deduced is

f4s,4p = 1.60 ± 0.04. (11)

The fact that 1.6 units of the oscillator strength reside in f4s,4p means that there are only ≈0.5
units of oscillator strength spread over all of the other bound and continuum states. A lifetime
measurement [16] for the 4s5p 1Po

1 level yields an upper limit (assuming 100% branching
to ground) f4s,5p � 0.063, illustrating the dominance of f4s,4p in the sum. Moreover, the
low-lying intrashell nature of the n = 4 transition leads to a large ratio E2

4s,5p

/
E2

4s,4p ≈ 8.5,
further decreasing the contribution of higher-lying levels to the inequality. For these reasons,
the bracketing inequality is very tight, and relatively insensitive to �Ne.

For an unbranched transition, the relationship [22] between the lifetime and the oscillator
strength is (energy in au)

g4p

τ4p
= 2cα4

a0
E2

4s,4pg4sf4s,4p (12)

where gk denotes the degeneracies of the levels and α is the fine structure constant. Making
this conversion, the result in equation (11) corresponds to a lifetime

τ4p = 0.096 ± 0.003 ns. (13)
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This confirms the ANDC measurement 0.101 ± 0.010 ns [15] with a significant improvement
in accuracy, and also corroborates the correctness of the identification of the cascade in that
ANDC analysis. The value is also in good agreement with theoretical estimates [17, 18].

3.3. Determination of the nonadiabatic correlation

Having established the value of f4s,4p, this can be used in equation (6) to bracket the value of
β. This yields values

1.6947 � β � 1.7119 + 0.0428�Ne. (14)

Because equation (6) involves the cube of the excitation energies and E3
4s,5p

/
E3

4s,4p ≈ 25,
the effect of �Ne on the bracketing is even less in the case of β. Again using the estimate
�Ne = 0.1

1.6947 � β � 1.7162. (15)

Taking the central value and combining the bracketing width in quadrature with the uncertainty
in the measurement of αd , the value obtained is

β = 1.71 ± 0.03a5
0 . (16)

Theoretical values for this quantity are not available, but such calculations could provide a
useful test of the method.

4. Application to isoelectronic sequences

The quantum-mechanical aspects of both the emission lifetime τ4p and the absorption oscillator
strength f4s,4p are derived from the dipole transition element as expressed in the line strength
factor S4s,4p [22]:

S4s,4p = S4p,4s = |〈�4s|r|�4p〉|2. (17)

While this quantity is theoretically defined, it can alternatively be treated as an empirically-
determined experimental parameter. It can be deduced from the oscillator strength using
[22]

g4sf4s,4p = 2
3E4s,4pS4s,4p (18)

(energy in au), where f4s,4p is determined either from the measured value of τ4p using
equation (12), or from the measured value of αd using equation (4).

There is much empirical evidence [23–27] indicating that ions with one or two out-of-
shell electrons exhibit a nearly linear isoelectronic variation when the line strength factor is
scaled quadratically with the nuclear charge Z and plotted against a suitably chosen reciprocal
screened charge. Thus

Z2S = SH + B/(Z − C) (19)

where the trend approaches the hydrogenic limit SH for large Z [23]. An example is shown in
figure 1. The solid diamond represents the hydrogenic value SH = 1080.

In the case of two-valence-electron systems, it is also possible to take into account the
effects of intermediate coupling [24] using the singlet–triplet mixing angle obtained from
equation (8). First, line strength factors S(Res) and S(Int) are deduced from measured
lifetimes for the resonance and intercombination transitions. These are then corrected for
the effects of intermediate coupling to obtain effective line strengths Sr (Res) and Sr (Int) using
the relationships

Sr(Res) ≡ S(Res)/cos2 θ Sr(Int) ≡ S(Int)/sin2 θ. (20)
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Figure 1. Isoelectric interpolation of the reduced line strengths for the 4s2–4s4p transitions in the
Zn sequence.

This approach was applied to the Zn sequence earlier [25]. Based on lifetime measurements
(generally of ≈10% precision) of the resonance transitions in Ga II, Ge III, As IV and Kr
VII, and of the intercombination transitions in Kr VII, Nb XII, Mo XIII and Ag XVIII,
empirical lifetimes were predicted for all charged ions from gallium to uranium. The precise
determination of the Kr VII lifetime reported here provides a means to substantially improve
the determination of the singlet lifetimes in this sequence, as is evident from figure 1.

In the past this approach has been hindered by the lack of high precision measurements
for multiply-charged ions. Measurements at the 1% level are largely limited to neutral
and singly ionized atoms [28], where methods such as laser selective excitation of a static
sample can be employed. However, the regularity exhibited by isoelectronic data expositions
occurs for multiply-ionized systems, where the interactions are predominantly central. Most
measurements in multiply-charged ions are made through non-selective excitation of a fast ion
beam. The uncertainties in this type of measurement are typically 5–10%, often increasing
with degree of ionicity. Thus the use of the method described here to obtain a 3% measurement
in a six-times ionized atom represents a significant advance in the predictive accuracy of this
method.

It is clear from figure 1 that the Kr VII point, together with the hydrogenic asymptote at
high Z, establishes the fit to unprecedented accuracy. If measurements of modest accuracy are
sufficient to establish a screening constant C that produces linearity in this plotting exposition,
then a single measurement of high accuracy can be connected with the hydrogenic asymptote
to specify all members of the sequence. If a second ion in this sequence could be measured
to this precision, it would provide a means of confirming the linearity and further sharpening
the predictions.

Similar predictive semiempirical parametrizations of measured data have been carried out
for the Mg [24], Cd [26] and Hg [27] sequences. These studies could be greatly improved
by the addition of lifetime values deduced from precision spectroscopic determinations of αd

using the methods described here. When a comprehensive isoelectronic parametrization has
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been made for τ , the results can be utilized to provide a similar isoelectronic data base for αd

and β.

5. Accuracy of the method

As has been described above, the accuracy of this method involves the uncertainties in the
measured quantities, the magnitude of and the uncertainties in the width of the bracketing
inequality, and the validity of the single configuration approximation. Uncertainties in the
energy levels are usually well below the 1% level and do not contribute to the uncertainty.
The single configuration approximation can be tested using the overdetermination of the level
separations.

The width of the bracketing inequality (and hence the influence of its uncertainty) will be
small if: f4s,4p is large; E4s,4p is small; and E4s,5p is close to the ionization limit. For ions of
the Mg, Zn, Cd and Hg sequences these criteria are generally satisfied, and the propagation
of uncertainties within the method should be comparable to or smaller than the experimental
uncertainties in a 1–2% spectroscopic determination of αd .

Additional tests of the method could be made if precision time-resolved measurements
of τ and precision spectroscopic measurements of αd could both be performed for the same
ion, allowing a cross-check of consistency and reciprocity. The accuracy of the method could
also be probed by theoretical investigations of the magnitude of inner-shell contributions to
ground-state oscillator strengths.

6. Conclusion

For ionic systems for which the ground-state oscillator strength is concentrated in the lowest-
lying resonance transition, this method provides a means to interconnect αd , β and τ . If,
as in this case, a precision measurement of αd is available, τ and β can be deduced.
Alternatively, if a precision measurement of τ is available, αd and β can be specified. Moreover,
screening parametrizations of reduced-line-strength data have been shown to permit accurate
isoelectronic interpolation and smoothing for entire isoelectronic sequences, based on a small
number of precisely measured lifetimes. This method could permit similar isoelectronic
specification αd and β. These quantities could also be efficiently deduced from ab initio
theoretical calculations of the intrashell oscillator strength.

It is hoped that the opportunity to exploit these interconnections will stimulate additional
precision spectroscopic studies of this type in similar systems.
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