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Abstract. The extensive arc emission measurements of transition probabilities by Corliss and
Bozman are known to contain errors due to flaws in the determination of level populations
in the source. However, if no similar errors were present in the photometric calibration, then
branching fractions from the same upper level deduced from these measurements should be
valid. It is shown that the branching fractions for thens2np2–ns2np(n+ 1)s transitions in SiI,
Ge I, SnI and PbI can be accurately estimated using intermediate coupling amplitudes obtained
from spectroscopic data, and thus provide a test of the validity of these measurements. The
results of Corliss and Bozman are examined in the context of comparisons with these estimated
values and with other measurements, and it is demonstrated that branching fractions from the
same upper level obtained from these data can be quite reliable.

Atomic oscillator strengths can be determined experimentally either by absolute emission,
absorption or dispersion measurements, or through the combined measurement of relative
branching fractions and level lifetimes. The absolute measurements require sample
equilibrium, a knowledge of the absolute number density and an absolute photometric
calibration, and the lifetime measurements yield oscillator strengths only in cases where
a single decay channel exists. Thus high-precision measurements have often involved the
combined measurement of lifetimes and branching fractions [1].

While many methods have been brought to bear on the precision measurement of
lifetimes [2] and much progress has been made in the measurement of branching ratios
[3], branching fraction data remain sparse and urgently needed. A very extensive tabulation
of transition probability data derived from arc spectra line intensities exists in the monograph
of Corliss and Bozman [4]. However, it is well known [5] that these transition probabilities
provide neither an absolute nor a self-consistent set of values, so care must be exercised in
their use. In general, the normalization must be corrected for two types of errors. The first is
in the determination of the concentration of radiating atoms in the arc source (which can be
corrected by summing transition probabilities over final states and renormalizing to match
measured lifetime data). The second is in the determination of the level populations in the
arc source due to either a lack of thermodynamic equilibrium or an inaccurate temperature
determination, which causes the renormalization factor to depend on the excitation energy
of the upper level. Since branching ratios involve the comparison of relative transition
probabilities from the same upper level, neither the overall normalization nor the arc
temperature should affect their validity. However, it does require an accurate photometric
calibration of the detection equipment over the very wide range of wavelengths spanning
the decay channels.
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In general, the comparison of experimental branching fractions with theoretical
calculations requires the specification of radial transition moments, which are sensitive
to the details of the potential. However, in the non-relativistic approximation, the relative
intensities of the lines within a supermultiplet all involve the same radial transition moment,
which cancels when branching ratios are formed. If there is no significant branching to
other configurations the branching fractions can be specified from angular factors and the
intermediate coupling (IC) mixing amplitudes, which can be determined from spectroscopic
energy level data. Thens2np2–ns2np(n + 1)s manifold of transitions in SiI, Ge I, Sn I

and PbI provide such a case, and comprehensive measurements for this supermultiplet
are contained both in the tabulation of Corliss and Bozman [4], and in more recent
studies [6–9]. While the lack of configuration interaction (CI) in these systems simplifies
the calculational specification of the branching fractions, the transitions cover a wide
range of both wavelength regions and intensity ratios, and are no less challenging to
experimental measurement than any other system studied in [4]. We have therefore made
data-based empirical IC calculations of these branching fractions and compared them with
the measurements of [4] and others, in order to evaluate the reliability of the tabulation of
Corliss and Bozman as a source of branching fraction data.

For a pure configuration, the intermediate coupling amplitudes are manifested both by
the energy levels and by the transition probabilities of the levels. Thus, if the single-
configuration picture is valid, the measured energy level splittings within the upper and the
lower configuration can be used to determine the mixing amplitudes, and these can then
be used to specify (to within factors of the radial transition matrix) the relative transition
probabilities. In the case of the sp and p2 configurations, there are at most two normalized
mixing amplitudes for a given value ofJ , which can be characterized by a singlet–triplet
mixing angleθJ . For sp the mixing between3P1 and1P1 can be characterized byθ1 (primes
denote that theLS notation is only nominal for the physical states)
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whereas for p2 the mixing can be characterized between3P0 and1S0 by θ0 and between3P2
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A formalism has been developed previously [10, 11] by which these mixing angles are first
extracted from measured energy level data and then used to predict transition probabilities.
For a p2–sp manifold, the transitions from the upper level sp to the levels of the ground
configuration p2 can be deduced from this formalism using theLS-coupling angular
transition matrices [12, 13]. The nonvanishing values are
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These equations yield, for the upper level3Po
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It should be noted that in a fully relativistic Dirac treatment the corresponding expressions
will involve two separatejj -coupled radial transition matrices, and reduce to equations (13)–
(25) only if these two radial matrices are equal. Theoretical studies of these relativistic
corrections have been presented elsewhere [14].

For pure sp and p2 configurations the energy levels (and thereby the mixing angles) are
specified [10] by three parameters (F0, G1, ζp for sp andF0, F2, ζpp for p2, in the notation
of [13]). Since the sp and p2 configurations contain four and five levels, respectively,
the specification of these three parameters is overdetermined. Here this was treated by
using the average energiesεJ of the J = 0, 1, 2 levels to make an exactly determined
parametrization, computing the singlet–triplet splittings from this parametrization, and then
using the deviations as a measure of the validity of the single-configuration picture. Within
this framework, the mixing anglesθJ can be determined from the relationships [10]

cot(2θJ ) = WJ (26)

where the sp mixingJ = 1 level is given by

W1 = [ε2− 3ε1+ 2ε0]/[
√
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and the p2 mixing of theJ = 0 andJ = 2 levels is given by

W0 = −[10ε2− 21ε1+ 11ε0]/[4
√

2(5ε2− 3ε1− 2ε0)] (28)

W2 = −[5ε2+ 3ε1− 8ε0]/[2
√

2(5ε2− 3ε1− 2ε0)]. (29)

In terms of the transition elements〈k|r|i〉 given by equations (13)–(25), the transition
probabilities are obtained from

Aik(ns−1) = 1
3[1265.38/λ(Å)] 3 |〈k|r|i〉|2 (30)
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Table 1. Spectroscopic database and intermediate coupling parametrization of energy levels (in
cm−1). Sources of spectroscopic data: SiI [15]; Ge I [16]; Sn I [17, 18]; PbI [19].

Level Eobs EIC 1E Eobs EIC 1E

Si I Ge I

6p2 3P′0 0 0 0 0 21.8 +21.8

6p2 3P1 77.115 77.12 0 557.1341 557.1 0

6p2 3P′2 223.157 255.5 +32.4 1 407.9609 1 369.4−40.5

6p2 1D′2 6 298.850 6 266.5 −32.4 7125.2989 7165.8+40.5

6p2 1S′0 15 394.370 15 412.1 17.7 16 367.3332 16 345.5−21.8

6p7s3Po
0 39 683.163 39 683.2 0 37 451.6893 37 451.7 0

6p7s3Po
1
′ 39 760.285 39 760.3 0 37 702.3054 37 700.9−1.4

6p7s3Po
2 39 955.053 39 955.1 0 39 117.9021 39 117.9 0

6p7s1Po
1
′ 40 991.884 40 991.9 0 40 020.5604 40 022.0+1.4

Sn I Pb I

6p2 3P′0 0 107.5 +107.5 0 0 0

6p2 3P1 1 691.806 1 691.8 0 7 819.2626 7 819.3 0

6p2 3P′2 3 427.673 3 341.0 −86.6 10 650.3217 10 812.3+161.9

6p2 1D′2 8 612.955 8 699.6 +86.6 21 457.7982 21 295.9−161.9

6p2 1S′0 17 162.6 17 055.1 −107.5 29 466.8303 29 493.9 27.0

6p7s3Po
0 34 640.76 34 640.8 0 34 959.9084 34 959.9 0

6p7s3Po
1
′ 34 914.28 34 899.6 −14.7 35 287.2244 35 445.9+158.7

6p7s3Po
2 38 628.88 38 628.9 0 48 188.6296 48 188.6 0

6p7s1Po
1
′ 39 257.05 39 271.7 +14.7 49 439.6165 49 281.0−158.7

Table 2. Empirical singlet–triplet mixing angles (in degrees) and empirically deduced Slater
parameters (in cm−1).

Ion θ1 θ2 θ0 F0(p2) F2(p2) ζpp F0(sp) G1(sp) ζp

Si I −0.951 1.22 6.01 5 247.7 1016.0 181.1 40 421.4 557.0 181.3
Ge I −4.38 6.20 21.3 6 081.4 1016.9 879.8 39 139.1 576.6 1110.8
Sn I −10.2 16.8 29.7 7 333.3 918.6 2096.9 37 750.4 450.8 2658.7
Pb I −22.2 39.8 32.2 16 074.8 921.9 7292.2 44 568.2 789.2 8819.1

and the branching fractions are defined as

BFik = Aik/
∑
k
′
Aik′ . (31)

The measured energy level data (obtained from [15–19]) are given in table 1, together
with values obtained from theJ -averaged IC parametrization and the subtracted differences.
The agreement between the observations and the values obtained from the parametrization
indicates that the single-configuration approximation is valid. The extracted mixing angles
and Slater parameters are given in table 2.

Table 3 presents the branching fractions, computed from equations (13)–(25), by the
reduction of the measured transition probabilities of Corliss and Bozman [4], and from other
published experimental studies [6–9]. In SiI the agreement between the IC semiempirical
values and the high-precision measurements of Smithet al [6] is quite striking, and gives
additional credence to the single-configuration model for this system. Larger deviations exist



Letter to the Editor L773

Table 3. Comparison of semiempirical and measured branching fractions (in per cent). SE
denotes semiempirical estimates from this work, and CB denotes the measurements of [4].
Other measurements are from [3] for SiI, [7] for Ge I, [8] for Sn I and [9] for PbI.

Si I Ge I Sn I Pb I

Transition SE CB Other SE CB Other SE CB Other SE CB Other

3P′0← 3Po
1
′ 33.3 32 33.3 31.2 29 32.9 31.8 37 55 48.9 15 32

3P1← 24.7 24 24.7 21.2 27 20.3 17.4 27 13 12.8 11 18
3P′2← 41.1 40 40.7 38.3 36 36.1 41.0 22 19 38.1 74 49
1D′2← 0.88 0.4 1.2 8.8 7 10.3 9.3 14 13 0.29 0.5 0.5
1S′0← 0.06 — 60.2 0.52 0.6 0.38 0.52 0.3 — 0.01 — —
3P1← 3Po

2 25.2 33 24.6 26.4 29 20.3 28.5 30 30 36.0 15 16
3P′2← 74.8 67 75.4 73.1 69 67.8 67.7 64 62 51.2 37 41
1D′2← 0.020 — 0.027 0.53 1.4 1.3 3.8 6 9 12.8 48 43
3P′0← 1Po

1
′ 0.24 — 0.3 2.9 7 4.5 4.7 21 10 2.7 1 3

3P1← 0.25 — 0.2 3.3 6 3.6 6.8 13 4 11.5 11 10
3P′2← 0.15 — 0.2 1.0 2 1.7 0.03 — — 24.9 35 25
1D′2← 92.0 95 93.4 86.2 75 83.2 81.8 60 76 55.2 48 50
1S′0← 7.4 5 5.7 6.6 10 7.0 6.7 6 — 5.8 6 13

between the semiempirical and measured values for PbI, but it has been shown [14] that this
occurs because of unusually large differences between the two relativistic radial transition
integrals caused by fortuitous cancellation effects, and not because of any breakdown in the
single-configuration approximation.

The results of [4] generally agree quite well with both the semiempirical estimates
and with subsequent experimental measurements. These transitions involve branches with
wavelengths from 2000̊A to over 7000Å so, irrespective of any problems with either
the relative or absolute normalization of the transition probabilities in the measurements
of Corliss and Bozman [4], the results presented here demonstrate that the photometric
intensity calibration was accurate. It is therefore concluded that branching fractions from a
common upper level that are deduced from the measurements of [4] can be expected to be
reliable to the accuracies indicated in table 3.

I am grateful to Dr David Ellis for valuable discussions. The work was supported by the
US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences,
under grant number DE-FG02-94ER14461.
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