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The problem of the behavior of positrons and electrons in given
external potentials, neglecting their mutual interaction, is analyzed
by replacing the theory of holes by a reinterpretation of the solu-
tions of the Dirac equation. It is possible to write down a complete
solution of the problem in terms of boundary conditions on the
wave function, and this solution contains automatically all the
possibilities of virtual (and real) pair formation and annihilation
together with the ordinary scattering processes, including the
correct relative signs of the various terms.

In this solution, the “negative energy states” appear in a form
which may be pictured (as by Stiickelberg) in space-time as waves
traveling away from the external potential backwards in time.
Experimentally, such a wave corresponds to a positron approach-
ing the potential and annihilating the electron. A particle moving
forward in time (electron) in a potential may be scattered forward
in time (ordinary scattering) or backward (pair annihilation).
When moving backward (positron) it may be scattered backward

in time (positron scattering) or forward (pair production). For
such a particle the amplitude for transition from an initial to a
final state is analyzed to any order in the potential by considering
it to undergo a sequence of such scatterings.

The amplitude for a process involving many such particles is
the product of the transition amplitudes for each particle. The
exclusion principle requires that antisymmetric combinations of
amplitudes be chosen for those complete processes which differ
only by exchange of particles. It seems that a consistent interpre-
tation is only possible if the exclusion principle is adopted. The
exclusion principle need not be taken into account in intermediate
states. Vacuum problems do not arise for charges which do not
interact with one another, but these are analyzed nevertheless in
anticipation of application to quantum electrodynamics.

The results are also expressed in momentum-energy variables.
Equivalence to the second quantization theory of holes is proved
in an appendix.

1. INTRODUCTION

HIS is the first of a set of papers dealing with the
solution of problems in quantum electrodynamics.
The main principle is to deal directly with the solutions
to the Hamiltonian differential equations rather than
with these equations themselves. Here we treat simply
the motion of electrons and positrons in given external
potentials. In a second paper we consider the interactions
of these particles, that is, quantum electrodynamics.

The problem of charges in a fixed potential is usually
treated by the method of second quantization of the
electron field, using the ideas of the theory of holes.
Instead we show that by a suitable choice and inter-
pretation of the solutions of Dirac’s equation the prob-
lem may be equally well treated in a manner which is
fundamentally no more complicated than Schrédinger’s
method of dealing with one or more particles. The vari-
ous creation and annihilation operators in the conven-
tional electron field view are required because the
number of particles is not conserved, i.e., pairs may be
created or destroyed. On the other hand charge is
conserved which suggests that if we follow the charge,
not the particle, the results can be simplified.

In the approximation of classical relativistic theory
the creation of an electron pair (electron A4, positron B)
might be represented by the start of two world lines
from the point of creation, 1. The world lines of the
positron will then continue until it annihilates another
electron, C, at a world point 2. Between the times ¢
and ¢, there are then three world lines, before and after
only one. However, the world lines of C, B, and 4
together form one continuous line albeit the “positron
part” B of this continuous line is directed backwards
in time. Following the charge rather than the particles
corresponds to considering this continuous world line

as a whole rather than breaking it up into its pieces.
It is as though a bombardier flying low over a road
suddenly sees three roads and it is only when two of
them come together and disappear again that he realizes
that he has simply passed over a long switchback in a
single road.

This over-all space-time point of view leads to con-
siderable simplification in many problems. One can take
into account at the same time processes which ordi-
narily would have to be considered separately. For
example, when considering the scattering of an electron
by a potential one automatically takes into account the
effects of virtual pair productions. The same equation,
Dirac’s, which describes the deflection of the world line
of an electron in a field, can also describe the deflection
(and in just as simple a manner) when it is large enough
to reverse the time-sense of the world line, and thereby
correspond to pair annihilation. Quantum mechanically
the direction of the world lines is replaced by the
direction of propagation of waves.

This view is quite different from that of the Hamil-
tonian method which considers the future as developing
continuously from out of the past. Here we imagine the
entire space-time history laid out, and that we just
become aware of increasing portions of it successively.
In a scattering problem this over-all view of the com-
plete scattering process is similar to the S-matrix view-
point of Heisenberg. The temporal order of events dur-
ing the scattering, which is analyzed in such detail by
the Hamiltonian differential equation, is irrelevant. The
relation of these viewpoints will be discussed much more
fully in the introduction to the second paper, in which
the more complicated interactions are analyzed.

The development stemmed from the idea that in non-
relativistic quantum mechanics the amplitude for a
given process can be considered as the sum of an ampli-
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tude for each space-time path available.! In view of the
fact that in classical physics positrons could be viewed
as electrons proceeding along world lines toward the
past (reference 7) the attempt was made to remove, in
the relativistic case, the restriction that the paths must
proceed always in one direction in time. It was dis-
covered that the results could be even more easily
understood from a more familiar physical viewpoint,
that of scattered waves. This viewpoint is the one used
in this paper. After the equations were worked out
physically the proof of the equivalence to the second
quantization theory was found.?

First we discuss the relation of the Hamiltonian
differential equation to its solution, using for an example
the Schrédinger equation. Next we deal in an analogous
way with the Dirac equation and show how the solu-
tions may be interpreted to apply to positrons. The
interpretation seems not to be consistent unless the
electrons obey the exclusion principle. (Charges obeying
the Klein-Gordon equations can be described in an
analogous manner, but here consistency apparently
requires Bose statistics.)® A representation in momen-
tum and energy variables which is useful for the calcu-
lation of matrix elements is described. A proof of the
equivalence of the method to the theory of holes in
second quantization is given in the Appendix.

2. GREEN’S FUNCTION TREATMENT OF
SCHRODINGER’S EQUATION

We begin by a brief discussion of the relation of the
non-relativistic wave equation to its solution. The ideas
will then be extended to relativistic particles, satisfying
Dirac’s equation, and finally in the succeeding paper to
interacting relativistic particles, that is, quantum
electrodynamics.

The Schrédinger equation

idy/dt=Hy, 1)

describes the change in the wave function ¢ in an
infinitesimal time Af as due to the operation of an
operator exp(—iHAt). One can ask also, if ¥(xy, &) is
the wave function at x; at time ¢;, what is the wave
function at time #2>#? It can always be written as

Y (xa, 1) = f Ko, b xi, ¥ (x )1, (2)

where K is a Green’s function for the linear Eq. (1).
(We have limited ourselves to a single particle of co-
ordinate x, but the equations are obviously of greater
generality.) If H is a constant operator having eigen-
values E,, eigenfunctions ¢, so that ¥(x, /1) can be ex-
panded as 3", Cron(x), then ¢/(x, t2) =exp(—iE.(t2—1))
XCnda(x). Since Cn,= S ¢.*(X1)¥(X1, {1)d®x1, one finds

1R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

2 The equivalence of the entire procedure (including photon
interactions) with the work of Schwinger and Tomonaga has been
demonstrated by F. J. Dyson, Phys. Rev. 75, 486 (1949).

3 These are special examples of the general relation of spin and
statistics deduced by W. Pauli, Phys. Rev. 58, 716 (1940).
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(where we write 1 for xy, £; and 2 for Xy, #) in this case
K2, 1)=2% ¢a(X2)$a*(x1) exp(—iE.(t—1)), (3)

for £,>¢;. We shall find it convenient for £,<{; to define
K(2,1)=0 (Eq. (2) is then not valid for ,<#). It is
then readily shown that in general K can be defined by
that solution of

(19/9t,— H2)K (2, 1)=18(2, 1), C))

which is zero for t,<t;, where 6(2, 1) =68(ta—11)8(x2—x,)
X 8(y2—91)8(za—21) and the subscript 2 on H, means
that the operator acts on the variables of 2 of K(2, 1).
When H is not constant, (2) and (4) are valid but K is
less easy to evaluate than (3).4

We can call K(2,1) the total amplitude for arrival
at Xy, Iy starting from xy, #;. (It results from adding an
amplitude, exp:S, for each space time path between these
points, where S is the action along the path.!) The
transition amplitude for finding a particle in state
x(Xs, £2) at time fy, if at 4 it was in (x4, #1), is

f QK Dy (D). )

A quantum mechanical system is described equally well
by specifying the function K, or by specifying the
Hamiltonian H from which it results. For some purposes
the specification in terms of K is easier to use and
visualize. We desire eventually to discuss quantum
electrodynamics from this point of view.

To gain a greater familiarity with the K function and
the point of view it suggests, we consider a simple
perturbation problem. Imagine we have a particle in
a weak potential U(x, ¢), a function of position and
time. We wish to calculate K(2,1) if U differs from
zero only for ¢ between ¢, and ¢,. We shall expand K in
increasing powers of U:

K(2,1)=Ko(2, )+K (2, )+ K2, 1)+---. (6)
To zero order in U, K is that for a free particle, Ko(2, 1).*
To study the first order correction K®(2, 1), first con-
sider the case that U differs from zero only for the
infinitesimal time interval Af; between some time i3
and 3+ At3(¢41<t3<t2). Then if ¢(1) is the wave function
at Xy, /1, the wave function at x, #3 is

V3= f K3, V(D) @)

since from {; to f; the particle is free. For the short
interval A¢; we solve (1) as

lﬁ(X, i3+ Al3) = exp(—-iHAta)\b(x, la)
= (1 —iHoAts—iUAlg)ll/(X, l;;),

4For a non-relativistic free particle, where ¢,.=exp(ip-x),
E,=p*/ 2m, (3) gives, as is well known
K(2, 1)=f exp[— (4p-x1—ip- X2) —ip2(fa—11) /2m Jd3p(27) ™3
= (2xim 1(t2— 1))} exp(Fim(Xa— x1)2(La—£1) ™)
for fz>11, and Ko=0 for <ty





