
1 

 

 

 

 

 

The two-way bridge between transition lifetimes and dipole 

polarizability: A case study of Mg-like P (IV) 

 
 Nicholas Reshetnikov

1
 and Lorenzo J. Curtis

2 

 
1Physics Department, Harvard University, Cambridge MA 02138 
2
Department of Physics and Astronomy, University of Toledo, Toledo Ohio 43606 

 
 

Abstract 
 
For atoms and ions with the ground state electron configuration of ns2 1S0, a remarkable 
approximation of the dipole polarizability can be made from just one transition lifetime 
measurement.  Particularly, since the ns2 1S0 – nsnp 1P1

o  intrashell transition dominates the total 
oscillator strength of transitions to the ground state, it in turn dominates the dipole polarizability 
of the ion.  The oscillator strength serves as the quantum mechanical link between the two 
empirical quantities, allowing knowledge of both from a precise measurement of one.    This 
relationship is especially useful for studying atoms for which precise measurements of either the 
lifetime or dipole polarizability are difficult or impossible to make.  What is more, with just a few 
such precise measurements of either quantity, isoelectronic linearities can be exploited to 
interpolate to ions beyond empirical study.  The Mg-like P (IV) ion, with two old and conflicting 
lifetime measurements and one precise dipole polarizability measurement, gave an excellent 
opportunity to test the two-way relationship.  However, difficulty caused by cascading from 
higher energy states and blending from higher charged ions made the lifetime measure of .35(2) 
ns an unsatisfactory upper limit.  If the blending can be removed by running the phosphorus beam 
at lower energies, the ANDC method can be used to decouple the cascades.  Whether or not this 
attempt succeeds, the problems in precise lifetime determination of P (IV) underscore the 
usefulness of the two-way lifetime-dipole polarizability bridge and isoelectronic interpolation to 
sidestep empirical constraints on precise measurement. 
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Introduction / Background 

 
Given the remarkably large number of phenomena that can be explained solely through 

valence shell electron interactions, little attention has been paid to the rest of the electrons, 
hidden in the “fuzzy” inner electrons clouds.  Add to this the high energy needed to liberate those 
electrons and the difficulty in isolating them, and it is understandable why there has been such 
limited research in the area.  Nonetheless, there are ways to get at the inner shells without the 
complications arising from the outer electrons.  Ionizing atoms is one of the best ways of doing 
just this—peeling off the outer electrons to reveal the once-hidden electron layers underneath.  In 
other words, a system considered beyond modern experimentation techniques can be effectively 
studied by transforming it into a more familiar one with valence electrons.   

A very important property that can be studied in such a system is the dipole polarizability 
αd, effectively a measure of an atom’s tendency to form a dipole in an electric field.  While it 
may seem like an obscure quantity, the dipole polarizability is really a fundamental property of 
the quantum mechanics of the electron.  Additionally, it is responsible for a number of practical 
physical phenomena ranging from dielectrics to indexes of refraction and intermolecular forces. 

However, direct measurements of the dipole polarizability require very complex 
equipment and procedures.  It is simpler to determine αd indirectly, through measurements of 
transition lifetimes of highly excited states of the ion.  These measurements allow a direct 
calculation of the quantum mechanical quantity called the oscillator strength f – an analog of the 
spring constant for simple harmonic oscillators.  With knowledge of the energy and oscillator 
strength of each transition to the ground state of the ion, αd can be calculated.  Unfortunately, 
gathering such data is not very feasible given the theoretical infinite number of energy states and 
oscillator strengths to take into account.  But it turns out that for atoms with the outer electron 
configuration of ns2—that is, two electrons in the outer-shell (i.e. Mg, Cd, Zn, etc.)—a 
remarkably accurate approximation of αd can be made with just one precise lifetime 
measurement [1]. 

For atoms with this electron configuration the transition that dominates the oscillator 
strength—and equivalently the dipole polarizability—has three important properties.  It is (1) the 
lowest resonance energy transition to the ground state of the valence shell, (2) an unbranched 
transition—the only one that goes directly to the ground state, and (3) an intra-shell transition, 
between the s (ground) and p states of the valence energy level.  It is intuitively plausible that a 
transition closest to the ion nucleus (lowest resonance), with no interference from other possible 
transitions (unbranched) would be a substantial part of the total oscillator strength of the ion.  
Yet, it is remarkable the overwhelming extent to which this one transition dominates the total 
sum of the transition oscillator strengths.  A rigorous explanation for this domination involves 
cancellation in the dipole transition matrix for particular energy levels, and is described in detail 
by Curtis in Atomic Structures and Lifetimes [2]. 

 Unfortunately, this approach of deducing αd from lifetime measurements is essentially 
limited to ions with ns and ns2 electron configurations.  Further, even for ions with favorable 
configurations, very high energies are required to sufficiently ionize the atoms to get at the very 
deep electrons.  Once again one can use an indirect method to get around this practical 
constraint.  Through another quantum mechanical quantity called the line strength S, a linear, 
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regularly varying plot can be made of isolectronic sequences of ions.  Because of their linearity, 
these plots allow for interpolation and extrapolation to highly ionized atoms (both positive and 
negative) based on a just a few precise, moderately-ionized lifetime measurements.  Further, they 
encode information on not just the lifetime, but also the oscillator strengths.  There is thus the 
potential for compiling databases of dipole polarizabilities and transition lifetimes from any 
given one of these values.  A simple schematic representation of the relationships is shown 
below in Figure 1. 

 
Figure 1:  Relationship between important quantities derived from lifetime measurements 

of the lowest level intrashell transition to the ground state of simple ions  
 
  

 

     Lifetime                 Oscillator Strength           Line Strength 

 

 

 

   

Dipole Polarizability 

 

Theory 

 
Now while the theoretical formulation of these quantities is steeped in quantum 

mechanics, it is helpful to see the relationships between the different quantities mathematically.  
These relationships are formulated by Curtis in [1].   

The inverse correlation between the lifetime τ and the oscillator strength f of a ns2 – nsnp 
transition is given by 
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where α is the fine structure constant and a0 is the Bohr radius.  The ns np simply signifies the 
intrashell transition from the p to the s (ground state) orbital.  Intuitively, this inverse relationship 
makes sense when the f is compared to the spring constant.  For just as a high spring constant 
means a stiffer oscillator with a higher frequency and more energy emission, so does a higher 
oscillator strength correspond to a faster release of energy in the transition—and thus a shorter 
lifetime. 
 The dipole polarizability for the ground state is directly proportional to the sum of the 
oscillator strengths: 
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where n’ is represents transitions from higher energy levels.  Only the transitions to the ground 
state are considered as are relatively negligible.   
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Experiment 
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Invoking the f-sum rule—that the sum of the oscillator strengths of every transition for a 
given ion is equal to its number of valence electrons Ne—we can formulate a good 
approximation of the dipole polarizability: 
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The second term of the sum represents the uncertainty in the formulation, effectively taking the 
midpoint of the uncertainty range as an approximation for αd.  And for moderately ionized atoms 
this uncertainty is virtually negligible.  Thus, a highly accurate approximation of the dipole 
polarizability can be made with knowledge of the dominant oscillator strength (derived from a 
single lifetime measurement using equation (1)). 
 The final piece in figure 1 is the line strength S, which is really the heart of the quantum 
mechanical formulation of the oscillator strength and in turn dipole polarizability.  In Dirac 
notation it can be represented as, 
 2

npnsnpns rS ||, ψψ=  (4) 

  
whereψ  represents the wave function for the given energy state, ns or np, of the ion.  The 
relationship to the oscillator strength (and in turn through (3) to the dipole polarizability) is given 
by: 

 npnsnpnsnpns SEf ,,, 3
2

= .  (5) 

[1]. 
 

Experiment 

 

Goal 
The goal of the experiment was to improve the Mg isoelectronic plot of the line strength 

variation with atomic number by taking a lifetime measurement of the singlet 3s2 - 3s3p 
transition for P (IV).  The interest in this lifetime comes from the fact that there are two earlier, 
incompatible measured lifetimes of .22 ns [3] and .35 ns [4].  Based on recent highly precise 
measurements of the dipole polarizability by Magnusson and Zetterberg [5], a very good 
estimate can be made of what the lifetime should be through equations (3) and (1). In fact, from 
the measured αd, the theoretical lifetime should be ~.29 ns, right at the midpoint of the earlier 
two measurements!  Beyond testing the validity of this theoretical coincidence, the new 
measurement would serve to not only improve the isolectronic plot, but also confirm the power 
of this translation between lifetimes and dipole polarizabilities. 
 
Procedure: Beam Foil Spectroscopy 

The measurement of this lifetime was done with the Toledo Heavy Ion Accelerator 
(THIA), using beam-foil spectroscopy.  A schematic picture of the accelerator is shown in 
Appendix A.  The source (powdered phosphorus) was first placed in a very thin, tube-like 
“oven” about four inches long.  The oven was then secured next to an anode and a filament made 
of tungsten.  A small, thin pipe perhaps a millimeter in diameter connects the phosphorous 
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powder to a source of argon gas.  This gas provided a stable medium to carry the ionized 
phosphorus, akin to how water carries sodium chloride.  Once ready to create an ion beam, a 
high voltage was applied to the source and the gas in the chamber with the source was 
pressurized.    The small oven was then heated in order to vaporize the phosphorus and allow it 
to mix with the argon.  As the voltage was increased to the tune of 30 kV, more electrons were 
emitted from the filament—colliding with the incoming gas and ionizing it in the process [6].   

Ultimately, an ionized plasma developed, which was a mixture of the gaseous argon and 
ionized phosphorus.  Its presence was immediately apparent as the current through the chamber 
instantly shot-up.  In a few of the runs this plasma actually took quite a while to develop as it 
required tweaking of the gas pressure, voltage, magnetic field , as well as oven heat.  Once 
attained, the argon/phosphorus mixture was accelerated through an electric field and deflected by 
the “mass selector electromagnet” in Appendix A.  The magnets are adjusted to deflect only the 
ions of a particular mass – in the case of phosphorus approximately 31.0 amu. 

Following the path in the figure into the main acceleration column, the beam’s vertical 
and horizontal direction in the accelerator column is adjusted with a controllable electric field.  
Once the path is satisfactory (i.e. the beam is stable and relatively straight), the electrostatic 
deflection chamber sends the beam at a small fraction (<1%) of the speed of light into a thin 
carbon foil.  Upon impact, the phosphorus ions may transfer charge and electrons become 
excited to higher energy levels.  The magnitude of these energy levels depends on the beam’s 
energy.  The electrons then spontaneously decay to their ground states as they exit the foil. 

In order to measure the lifetime of these transitions to the ground state a channeltron was 
used.  It effectively measures the intensity of a certain wavelength of electromagnetic 
spectrum—in this case of the lowest intrashell transition of P (IV), 950.7 Ǻ—and takes counts of 
individual photons being emitted from the transitions of the characteristic wavelength and 
energy. 

To model the decay, the detector is moved from the foil in regular time steps, making an 
intensity count at each step.  The result is an exponential decay of the intensity of the particular 
wavelength as a function of distance from the foil.  This can be easily translated to be a function 
time by dividing all the lengths by the constant beam speed, which was 1.2 mm/ns for the 240 
keV energy supply.  Five such decays were measured. 

Now to verify that there were no significant systematic errors in the measurement, the 
procedure was repeated five more times, varying the direction of the detector movement and the 
energy of the beam.  Three runs were modeled at the same energy as before but in the “reverse” 
direction, where the detector was moved toward the foil, instead of away from it.  This 
essentially checked that the detection equipment was mechanically sound.  Two more runs were 
done, once more with the detector moving in the “forward” direction, but this time applying an 
energy of only 190 keV, about 25% less than the previous runs in both the forward and reverse 
directions.  While this means a slower beam speed, and in turn more collisions with the beam-
foil, the lifetime for the 950.7 Ǻ transition should not theoretically vary from the higher energy.  
Since higher ionized atoms and higher excited states are created at higher energies, a lower 
energy is an effective way to tell whether there is blending and cascade complications (see Error 
section below) in the data—which can result from both excitations from the same ion P (IV) or 
from P (III), P (V) etc. 
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Data Collection 
 
 The wavelength settings as well as dwell times for the counts of the detector were 
controlled by a LabVIEW VI created by Shan Ambalanth here at the University of Toledo.  This 
program showed the real-time compilation of the decay plots and stored the numerical data in 
designated files.  Appendix C shows the raw data of the intensity counts.  This data included the 
distance steps from the foil, the intensity/number of counts, and the signals across the optical 
monitor and faraday cup. 
 Using Microsoft Excel, the counts for the five primary (240 keV, forward foil) runs, the 
three reversed runs (240 keV), and the two lower energy runs (190 keV, forward foil) were each 
separately added.  Then the foil positions were normalized so that the peak of the three sets of 
summed data corresponded to zero on the foil position.  While it doesn’t necessarily affect the 
lifetime calculation, this adjustment is physically sound—as it implies a start to the decay upon 
leaving the foil—and, more importantly, it allows for a better comparison of the three compiled 
data sets.  
 The Mathematica non-linear fit function NonlinearRegress was used to fit the three sets 
of data to suitable two exponential curves.  NonlinearRegress uses the Levenberg-Marquardt 
method, which computes a least-squares fit to minimize the χ2 value.  In general, the two 
exponential fits proved remarkably well in modeling the data points for all three data sets.  The 
data and fitted-curve is shown in Figure 2(a).  Figure 2(b) shows the same data, but with a semi-
log plot; the two decays are very clear and meet at approximately 2 nm. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, it is wise to compare the three plots visually as well as numerically.  Figure 3(a) and (b) 
on the next page show all three fits (normal (high energy), low energy, reverse direction) on the 
same graph.  Once again, the first shows the regular fitted plots—this time with uniform 

Figure 2: Intensity data for λ 950.7Ǻ measured at 240 keV with detector moving away from foil; 
(a) is the normal plot with a two-exponential fit, (b) is the same plot but on vertical log scale 
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exponential coefficients of 10—and the second plot includes the same three fits but on a semilog 
axis. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The closeness of the three fits is a strong indication that there was little systematic error in the 
measurements. 
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Results / Calculations 

 

Table 1: Lifetime calculations for the two decays and subsequent dipole polarizability 
calculation with uniform 5% uncertainty in measurements 

  
The results of the τ-determination from the two-exponential fits on the previous page are 

displayed numerically in Table 1 above.  The sharp correlation of the plots is mirrored by the 
nearly identical measured lifetimes in the three sets of runs. 

Using equations (1) and (3) we can formulate the dipole polarizability in terms of the 
measured lifetime by rewriting the f – τ relationship of (1) and inputing the result into (3): 
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The values of all the constants and energies are displayed in Appendix A.  The resulting dipole 
polarizability calculations are shown in Table 1. 
 Despite the strong agreement of the three fits and the agreement with the previous 
lifetime measurement of .35 ns, the resulting dipole polarizability is worryingly smaller than the 
measured value of 6.31 a0

3 by Magnusson and Zetterberg.  Possibilities for this discrepancy are 
explored in the next section. 
 However, perhaps the most glaring indication of the error in the measurement can be seen 
in the change of the isoelectronic plot of 1/(Z-C) vs Z2S, where Z is the atomic number, S is the 
line strength, and C is an arbitrary constant—adjusted to linearize the points.  Figure 4 on the 
next page shows how a .35 ns lifetime measurement disrupts the linearity of the plot, while the 
previous αd measurement supports the linearity very well. 
 
 

Conditions Primary lifetime (ns) Secondary 

lifetime (ns) 

Dipole Polarizability 

(a0
3
) 

Standard 

(5 runs) 
.35 +/-.02 9.1 +/- .5 5.36 

Reverse 

(3 runs) 
.36 +/-.02 8.5 +/- .4 5.28 

Low E 

(2 runs) 
.36 +/-.02 8.8 +/- .4 5.28 

Mean .36 +/-.02 8.8 +/-.4 5.31 
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Figure 4:  Comparison of Isolectronic plot using the previous αd measurement (a) to the new plot 
based on new the P (IV) lifetime (b)  
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Error Analysis 

 
 There are several places to look at for the source of the error in the lifetime measurement.  
There may have been technical problems with the intensity measuring device (channeltron).  
Also, the fitting data selected or the fitting method used, Mathematica’s NonlinearRegress, may 
be flawed.  More likely, however, the problem was not so much in the accuracy of the data or in 
its manipulation, as in its interpretation.  For, one of the limitations of beam foil spectroscopy 
(BFS)—and other non-selective lifetime determination techniques—is its very “non-selectivity.”  
The fact that BFS gives access to virtually all transitions and excites all levels is a double-edged 
sword.  On the one hand, you can look at transitions very difficult to see through non-selective 
means; on the other hand, there is the potential for blends and cascades to interfere with the 
lifetime you are interested in measuring.  Interference from cascades from higher levels into the 
3s3p level of P (IV) may very well account for the higher-than-expected lifetime determination.  
Still, all sources of error must be considered. 
     
Beam stability 
 
 The first place to check was the beam stability.  Of course one way to check that it’s 
stable is to monitor the voltage coming through the acceleration chamber.  However, what is 
more important is the stability of the beam up and around the actual foil and detector.  There are 
two pieces of equipment for this purpose: the faraday cup and the optical monitor.  The former 
detects the ions (and thus the current) that come out of the foil, while the latter detects the actual 
intensity of the light with a photomultiplier tube.  While the technical aspects are a bit 
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complicated, the basic idea is that the signals of both of these detectors to be stable—as close to 
constant as possible.  The standard way to check this is to normalize the signals of both detectors 
and then take their ratio; the closer the ratio is to one, the more stable the beam and more reliable 
the data.  In general, a ratio between 1 and 1.2 is considered adequate.  Figure 5 shows two of the 
normalized signal comparisons of the faraday cup and optical monitor.  Green is the faraday cup, 
blue the optical monitor, and red is the ratio optical monitor/faraday cup. 
 
Figure 5: Comparison of Beam stability for two runs at 240 keV, forward direction 

 
Despite the general increasing trend of the ratio in the run at the left, the ratio stayed below 1.2 
for most of the run and the data is considered reliable.  The run shown at the right, however, 
should be suspect to scrutiny given the sudden fall and jump in the signals and the ratio.  
However, in general the ratios for the plot were in the general safe range of 1 to 1.2 and thus it is 
unlikely that beam fluctuations could account for the high lifetime measurement. 
 
Fitting and Mathematica 
 
 The data region picked to be fitted must be picked a few points after the start of the 
decay, after the peak in the curve.  It is only after those few initial counts at the peak that the true 
exponential decay begins.  The best way to pick exactly where to begin the region is by checking 
to find the two points that have the greatest difference from each other and after which the 
successive differences are all smaller.  This ensures that you are looking at the decay and not at 
the effects of beam foil collisions.  Given the remarkable visual fit to the data points shown in 
Figure 2(a) and the other curves, this was not a problem. 

While certainly adding to the total uncertainty of the lifetime determination, the 
Mathematica method used is even lesser likely to account for the high lifetime.  This is perhaps 
best seen by the superb two-exponential fits for all three data sets shown in Figure 3.  However, 
Mathematica itself can calculate the deviation of the data from the fit.  In particular, the 
confidence interval of the data—the interval where there is a 95% chance of the data to fall—was 
calculated for the nonlinear regressions for the three fits in the table on the next page. 
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Table 2: Confidence intervals for Mathematica’s nonlinear fits to decay data for P (IV) 
 

Type Confidence Interval (ns) 

240 keV, forward detector (.349,.357) 
240 keV, reverse detector (.354,.364) 
190 kev, forward detector (.352,.365) 

 
Given the general agreement of the confidence regions and the strong correlation between the 
curves and the data points, uncertainty in the fitting method can be discounted. 
 
Cascades and Blending 
 
 The final, and most 
important consideration to make is 
of the cascades to the 3s3p 1P1

o 
level and the blending potential 
from other charged states of 
phosphorus.  Figure 6 shows four 
different cascades to the energy 
state that we are interested in.  And 
two of them, 3s4s 1S0 and 3s2S0, 
have lifetimes very close to the 
lowest resonance λ 950.7 Ǻ that 
we’re interested in.  Thus, the 
decay curve that was measured 
likely included the decays of all 
these higher energy states.  Their 
contributions depend on their 
transition probablities, and as they 
are high for at least two of them, 
the ~.36 ns measurement of the 
experiment more than likely 
includes these higher energy states.  
   
So, the intensity measured is really the sum of all the exponential decays coming into the upper 
level: 
 
 it

i
iecI τ−∑= /

 (8) 
 

Notice the long decay from 3p21D2.  This accounts for the long tail in the two-
exponential fits, and nearly matches the ~ 9.0 ns determined from the fit for the secondary decay.    

Now, it may seem that the possibility of all these cascades contradicts the precise decay 
fit attained with Mathematica; afterall the two-exponential fit was visually remarkably accurate.  

Figure 6 : lifetimes and wavelengths for P(IV) 
cascades [7] 
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Yet, as these cascades have very short lifetimes, their contribution may be small in terms of the 
visual fit.  Even a sophisticated computer fitting method would be unable to decouple the other 
exponentials.  However, through a technique known as ANDC, invented by Curtis [2], the 
multiple exponential decays can be decoupled by empirical measurements of the different 
contributing cascades. 

In fact, the ANDC method could have been used to decouple all the cascades and scale 
down the overly high lifetime determination were it not for the additional complication of 
blending.  Blending essentially occurs when transitions—usually in different charged ions of the 
same atom—have the same or very close characteristic wavelength.  If the wavelengths of the 
transitions are closer than the range of the spectrometer (channeltron in our case), it can be 
nearly impossible to distinguish between the two decays.  And this is exactly the case for the 
3s21S0 transition at  λ1188 Ǻ.  It turns out that the lowest ground state transition for P (V), has a 
wavelength of difference less than an Angstrom.  Without the ability to resolve the 3s21S0 in 
P(IV) from the decay from the 3p1P1

o of P(V), decoupling the exponentials is hopeless. 
Thus, the higher-than-expected lifetime determination is more than likely of these 

cascades falling from higher energy states.  Though usually solvable, this problem is confounded 
by the blending from the P (V) ion.  This demonstrates one of the pitfalls of beam foil 
spectroscopy, where unwanted interference can occur from differently ionized states. 
 
Conclusion and Prospects 

 

While the lifetime determination gave a value too high, there is still a potential for 
resolving the lifetime from the cascades.  For, even though energies of 240 and 190 keV seem to 
cause the blending to occur—given the near identical lifetime determinations for the different 
energies—an even lower enough energy can eliminate it.   

If the beam is run at a lower energy, it will collide with the foil at a slower speed.  And if 
that speed is small enough so that only ions of the magnitude of P (IV) (and no higher) are 
created, the blending from P(V) can be removed.  The ANDC method can then be used to 
decouple the four cascades into the 3s3p1P1

o level.   
 Unfortunately, there is a tradeoff with running at lower energies.  For as the speed of the 
beam is decreased there is a longer dwell time of the ions in the foil and more collisions.  The 
result is a shortened foil life.  Additionally, a lower energy means less excitation and weaker 
intensity of the beam at any given wavelength.  A lower intensity means less counts will be made 
and thus there will be more uncertainty in the measurements. 
 The most effective method will be to gradually shift the energy down until there is a 
noticeable difference in the decay curve at λ1118 Ǻ.  This will ensure that the energy is as high 
as it can possibly be in order to remove the blend from P (V), and do minimum damage to the 
foil. 
 But whether or not the lifetime can be improved to be compatible with the isoelectronic 
plots of Figure 4 and the previous αd measurement, the P(IV) ion truly revealed the power of this 
two way relationship between transition lifetimes and dipole polarizability for atoms with the 
outer configurations ns2.  While it would be nice to have a confirmation of the predictions of the 
isoelectronic sequence and resolve the previously measured conflicting lifetimes, this is not 
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essential. Even for ions where one of these quantities is difficult to measure or plagued by 
unlucky circumstances (such as blending) the other one can be measured to get both pieces of 
information.  And even if neither quantity can be measured for a certain complex system, 
interpolation and extrapolation can always be invoked in the linear isoelectronic plots derived 
from just a few precise measurements of either τ or αd. 
 The potential of such mutually reinforcing relationships is powerful in extracting 
information about inner electrons.  As of right now, it has been successfully applied only for the 
atomic systems with ns or ns2 configurations.  It would be natural to try it for other systems.  
However, dipole polarizability and transition lifetimes are just one pair of compatible quantities.    
The broader prospect for future research is to explore similar relationships between other 
empirical quantities in atomic systems of other configurations.     
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Appendix 

 
A.  The Toledo Heavy Ion Accelerator 
 

 
 
 
B.  Important Constants and Energies 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Quantity Value 

Bohr Radius, a0 52.918*10^-12 m 
Speed of light, c 299792458/109 m/ns 

Fine structure constant, α 1/137.035999976 
P (IV) Valence e- + core 

contribution, Ne 
2.1 

P(IV) E3s,3p .479283 Hartrees 
P(IV) E3s,4p 1.173360 Hartrees 
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C.  Raw Decay Data:  Intensity counts of the channeltron for 10 runs, (5 at 240 keV, forward 
moving), (3 at 240 keV, reverse moving), (2 at 190 keV, forward moving)  
 
foil 
distance 

HighE 
1 

HighE 
2 

HighE 
3 

HighE 
4 

HighE 
5 Rev 1 Rev 2 Rev 3 LowE 1 LowE 2 

-1.7 5 2 2 0 0 12 16 11 1 2 

-1.655 4 1 1 1 2 14 13 13 2 0 

-1.61 2 1 0 0 2 10 21 9 0 4 

-1.565 1 1 0 1 0 14 11 13 1 5 

-1.52 5 1 0 0 1 18 12 19 0 1 

-1.475 3 2 3 2 2 16 14 17 2 4 

-1.43 23 5 37 1 2 11 16 21 6 2 

-1.385 204 28 228 43 29 14 22 19 14 4 

-1.34 555 260 524 228 247 17 6 25 190 9 

-1.295 926 641 810 446 584 17 21 17 628 75 

-1.25 1301 934 979 742 858 15 23 23 1215 458 

-1.205 1461 1296 1143 889 1110 17 25 32 1796 1121 

-1.16 1708 1500 1266 1026 1283 17 27 20 2245 1767 

-1.115 1724 1740 1323 1176 1355 20 27 16 2462 2308 

-1.07 1789 1769 1372 1151 1407 25 26 31 2696 2630 

-1.025 1771 1859 1458 1203 1488 23 21 25 2620 2907 

-0.98 1848 1896 1429 1205 1462 21 19 45 2658 3066 

-0.935 1787 1824 1386 1273 1486 27 27 30 2512 3067 

-0.89 1699 1801 1279 1215 1455 25 19 29 2594 3054 

-0.845 1558 1785 1143 1168 1448 21 24 54 2471 2946 

-0.8 1410 1557 985 1055 1297 30 27 39 2324 2803 

-0.755 1285 1465 884 1003 1147 32 38 42 2139 2841 

-0.71 1112 1276 884 860 1046 18 46 40 2065 2460 

-0.665 1091 1245 793 783 969 38 44 53 1871 2252 

-0.62 963 1120 687 706 867 44 45 41 1657 2000 

-0.576 853 959 649 650 826 36 34 55 1475 1856 

-0.531 823 891 550 602 718 45 45 46 1380 1729 

-0.486 725 851 520 516 644 49 55 62 1200 1477 

-0.441 693 750 474 491 583 42 63 53 1036 1335 

-0.396 621 660 428 473 569 43 54 61 943 1227 

-0.351 542 642 401 384 494 47 68 71 836 1127 

-0.306 446 543 322 398 467 61 56 68 792 993 

-0.261 442 523 315 319 441 53 77 66 657 845 

-0.216 396 508 296 342 382 64 72 95 600 775 

-0.171 386 423 292 268 339 55 89 86 540 675 

-0.126 350 411 270 272 326 63 81 96 471 674 

-0.081 301 361 240 249 293 76 78 72 444 579 

-0.036 288 336 214 207 269 72 78 81 427 533 

0.009 284 312 169 224 245 88 96 95 365 549 

0.054 270 274 204 181 236 77 74 82 363 480 

0.099 232 248 182 159 216 61 92 72 355 426 

0.144 207 243 175 172 191 78 85 99 327 385 

0.189 244 239 157 150 214 80 96 103 307 364 

0.234 204 216 153 158 187 70 92 96 280 356 

0.279 185 233 146 145 168 75 98 108 265 339 
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0.324 156 199 117 130 166 77 74 98 239 325 

0.369 168 208 105 114 156 86 95 109 215 279 

0.414 156 175 96 117 122 58 89 97 239 282 

0.459 159 186 90 84 141 82 103 116 199 221 

0.504 128 196 105 110 140 87 104 112 199 245 

0.549 129 136 96 88 130 81 93 91 171 235 

0.594 109 125 101 98 121 97 107 87 171 201 

0.639 116 150 86 104 107 107 106 122 156 219 

0.684 110 126 100 66 109 99 106 117 163 172 

0.729 115 127 93 88 97 90 123 133 176 174 

0.774 116 138 85 85 82 80 119 123 145 211 

0.819 86 112 75 88 83 83 137 139 138 201 

0.864 96 115 93 60 92 114 132 142 129 168 

0.909 99 96 88 77 93 93 137 160 126 160 

0.954 82 116 88 73 98 120 159 156 122 169 

0.999 78 108 69 56 92 123 137 184 120 173 

1.044 85 112 57 61 105 124 159 182 125 151 

1.089 90 106 92 65 79 151 183 177 127 159 

1.134 103 96 76 61 71 167 181 195 105 138 

1.179 86 99 69 53 79 166 159 204 111 127 

1.224 83 81 57 71 80 143 217 221 123 142 

1.269 85 99 66 71 90 172 194 215 116 135 

1.314 74 104 49 73 70 170 205 258 108 135 

1.359 82 90 68 64 71 200 265 271 117 134 

1.404 75 103 62 54 74 209 255 265 110 134 

1.449 85 72 69 57 76 193 261 266 101 134 

1.494 72 70 80 45 73 236 286 307 103 136 

2.08 78 75 59 43 69 253 324 323 101 129 

2.67 54 66 49 53 61 275 361 360 107 106 

3.26 67 51 63 55 50 298 364 410 81 87 

3.85 71 69 45 40 47 304 436 443 90 89 

4.44 54 49 40 38 53 367 445 502 66 82 

5.03 51 45 37 41 44 403 469 508 68 82 

5.62 54 38 50 45 41 426 560 578 56 76 

6.21 43 49 29 30 29 490 599 589 63 55 

6.8 42 41 27 38 32 492 697 681 41 59 

7.39 45 39 25 21 34 571 726 723 59 52 

7.98 36 40 33 32 34 584 791 806 43 65 

8.57 34 41 27 22 31 707 779 907 44 57 

9.16 27 31 27 33 25 740 940 956 47 61 

9.75 31 31 28 21 38 886 966 1041 41 46 

10.34 30 42 16 30 25 877 1090 1191 38 53 

10.93 22 37 19 19 28 969 1212 1318 35 53 

11.52 28 26 27 23 33 1040 1389 1404 27 30 

12.11 25 25 20 19 22 1115 1426 1464 35 37 

12.7 21 24 20 28 23 1246 1513 1573 26 24 

13.29 21 20 22 20 25 1242 1593 1641 28 22 

13.88 27 19 25 22 15 1280 1534 1655 24 32 

14.47 18 36 17 16 24 1293 1552 1663 29 32 

15.06 24 21 18 12 15 1154 1358 1568 26 27 
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15.65 24 28 11 22 20 1175 1341 1460 21 39 

16.24 22 26 17 15 18 1065 1280 1394 23 28 

16.83 21 13 14 10 16 997 1146 1304 15 22 

17.42 14 26 21 15 17 933 932 1070 22 24 

18.01 15 12 16 19 14 758 774 873 17 18 

18.6 21 13 9 15 13 579 424 594 12 24 

19.19 15 14 14 19 19 313 168 283 21 21 

19.78 23 10 9 11 7 80 15 52 13 12 

20.37 20 17 7 11 12 14 0 6 9 13 

20.96 15 14 8 8 15 6 1 0 14 9 

 


