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The Einstein-Brillouin-Keller �EBK� quantization equation is used to determine the energy levels of
a two-body system with an arbitrary central potential that allows for bound states. The treatment is
based on the conservation laws and avoids both the Newtonian and Schrödinger differential
equations. Because analytic solutions for the energy levels do not exist in general, the EBK
condition is applied using the Newton-Raphson method and the radial probability density is
computed. Potentials appropriate for a diatomic molecule are considered and the effect of the
angular momentum on the radial distribution, the nature of the classical orbits, and the possibility of
closed orbits is studied. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

The traditional approach to teaching undergraduate phys-
ics emphasizes problems that have relatively simple closed-
form solutions. Even though the number of these exactly
soluable problems is small, they allow an exposition of im-
portant mathematical methods. However, the application of
these methods to more complex situations �such as perturba-
tions or many-body interactions� is beyond the scope of an
elementary course. Courses in introductory quantum me-
chanics also address problems with closed-form solutions.
We shall show that the use of position probability densities
allows classical and quantum mechanical approaches to be
applied in a similar way to more complex situations by using
numerical methods. Another advantage of placing more em-
phasis on numerical methods includes the fact that a wider
class of problems can be treated.

In this paper we consider the two-body problem with an
arbitrary central potential that allows for bound states. The
treatment avoids both the Newtonian and Schrödinger for-
mulations based on second-order differential equations and
instead begins with conservation of energy and angular mo-
mentum. Given these quantities, the radial momentum, turn-
ing points, and position probability distribution are computed
classically and quantization can be introduced using the
Einstein–Brillouin–Keller �EBK� method.1 As an example,
potentials appropriate for a diatomic molecule are used.

II. CALCULATION

A. Two-body problem

We consider the classical two-body problem2 with point
masses m1 and m2 at positions r1 and r2 interacting through a
central potential U�r�, where r=r1−r2 and r= �r�. When the
center-of-mass motion is removed, the Lagrangian becomes

L = 1
2�ṙ2 − U�r� , �1�
where the reduced mass is
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� =
m1m2

m1 + m2
. �2�

The motion is confined to a plane, so we introduce polar
coordinates r, �, and write the angular momentum L as

L = �r2�̇ = constant. �3�

The energy of the system is

E = 1
2�ṙ2 + 1

2�r2�̇2 + U�r� = 1
2�ṙ2 + Vr, �4�

where

Vr =
1

2

L2

�r2 + U�r� . �5�

We can now consider the radial part of the two-body prob-
lem as equivalent to the problem of a particle of mass �
moving in one dimension with the effective potential Vr. It
only remains to specify the central potential U�r� to com-
pletely define the system.

The harmonic oscillator and Kepler-Coulomb potentials
are well studied in both classical and quantum mechanics. To
go beyond these exactly soluble cases, we consider the kind
of radial potential used to model the motion of the nuclei in
a diatomic molecule.

B. Model potentials

The Lennard-Jones �6-12� potential is a standard model
potential for the interaction of two neutral atoms, including
both bound3 and scattering4 states. It combines van der Waals
attraction at large distances with a repulsive core. We take

U�r� =
a

r12 −
b

r6 , �6�

where a and b are positive parameters. The value of the
equilibrium separation r0, which is the solution of dU /dr

=0, is

572© 2006 American Association of Physics Teachers



r0
6 =

2a

b
. �7�

The value of the potential function at r0 is

− � =
b2

4a
−

b2

2a
= −

b2

4a
, �8�

where � is the magnitude of the depth of the potential evalu-
ated at r0. Thus, from Eqs. �7� and �8�, the coefficients a and
b are given by

a = �r0
12, b = 2�r0

6. �9�

The quantities � and r0 can be determined from experimen-
tally measured values.

We use parameters5 appropriate for the ground electronic
state of the van der Waals molecule Mg2: �=0.001 963 6
hartree and r0=7.36 bohr. In atomic units �hartree�bohr
�me= � =1� a=4.96�107 and b=624.

We also use a tabulated potential previously derived6 for
Mg2, so that we will have comparable results and a program-
ming check. Graphs comparing the analytic 6-12 potential to
the tabulated potential are given in Fig. 1.

C. Energy eigenvalues

The energy eigenvalues of a quantum system can be de-
termined using the EBK action quantization7–9

1

2�
� pidqi = �ni +

�i

4
� � , �10�

where the path integral is evaluated over the phase space of
each coordinate qi and its respective momentum pi. In Eq.
�10� ni is a non-negative integer and �i is the Maslov
index.10 The latter represents the total phase loss during one
period �in units of � /2�. We refer to the discussions in Refs.
10 and 11 to justify the values of the Maslov index used in
Eqs. �11� and �12�, although we shall discuss the value for
Eq. �11� in more detail.

The EBK quantization has been applied to several differ-
ent systems, for example, the Kepler-Coulomb and isotropic
oscillator potentials.1 It yields accurate, sometimes exact, re-
sults for the energy levels and thus its use is often appropri-

11

Fig. 1. Comparison of the potential �6-12� to the experimental tabulated
potential.
ate to avoid solving the Schrödinger equation.
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For a spherically symmetric potential, the quantization in-
tegrals for the zenith and azimuthal coordinates are1

�n� +
1

2
� � =

1

2�
� p�d� = L − Lz, �11�

n	 � =
1

2�
� p	d	 = Lz, �12�

where � and 	 are the zenith and azimuthal angles, respec-
tively, and Lz is the component of angular momentum along
the z axis. If we combine Eqs. �11� and �12�, we obtain

�n� + n	 + 1
2� � = L , �13�

and thus

�� + 1
2� � = L , �14�

with � a non-negative integer. For large values of �, we can
see that

L2 = ��2 + � + 1
4��2 	 � �� + 1��2. �15�

The fact that the EBK quantization yields L2= ��
+1/2�2�2 rather than the Schrödinger result L2= � ��+1��2 is
called the Langer modification and involves the automatic
inclusion of a higher-order correction in the semiclassical
formulation.12 This modification has the effect of achieving
the correct behavior for the uncorrected energies and wave
functions near the singularity at r=0, although at the expense
of the specification of the quantization of the angular mo-
mentum. As has been discussed by Watson,13 the choice of
whether or not to include the Langer modification is analo-
gous to the choice of the zeroth-order solution in a perturba-
tion calculation. For motions with a significant amplitude
near r=0 �such as the Kepler-Coulomb or isotropic harmonic
oscillator� the Langer form improves the zero-order energy
�uncorrected near the r�0 singularity� and the EBK formu-
lation gives a one-to-one correspondence between an eigen-
state and the classical orbit. For the model potentials we are
using, the amplitude near r=0 is small and there is no ad-
vantage to deviating from the traditional non-Langer form
used in the analysis of vibrational-rotational spectra of di-
atomic molecules. Thus we shall use the familiar ���+1�
form in Eq. �5� and its consequence in Eq. �17�.

For a non-relativistic two-particle system in a potential,
the radial momentum is given by

pr = 
2��E − Vr� , �16�

where E is the total energy, and Vr is the effective potential
energy defined in Eq. �5�. If we substitute Eq. �16� into Eq.
�10�, we can find the energy levels of the system. For the
6-12 potential, the momentum is

pr =
2��E − � a

r12 −
b

r6 +
��� + 1��2

2�r2 �� . �17�

The corresponding quantization is

�nr +
1

2
� � =

1

2�
� prdr =

1

�


r1

r2

prdr , �18�

where pr is defined in Eq. �16�, nr is the radial quantum
number, and r1 and r2 are the radial periapsis and apoapsis,

respectively.
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Because no closed-form solution exists for the EBK quan-
tization integral in Eq. �18� with pr given by Eq. �17�, we
evaluated the integral numerically. For input values of nr and
�, the program chooses an arbitrary initial value of E and
uses Simpson’s rule to calculate the integral. The program
then iterates several times according to the Newton-Raphson
method to find the energy that satisfies Eq. �18�, adjusting
both the total energy and the classical turning points corre-
sponding to that energy. The calculated energy levels of the
6-12 potential that correspond to the ground electronic state
of Mg2 are illustrated in Fig. 2 and tabulated in Table I.

To calculate the energy levels of the ground electronic
state of Mg2 using the tabulated potential requires a few
more steps. The program interpolates the potential for radial
separations that are not in the table by a linear function join-
ing two consecutive tabulated values. To evaluate Eq. �18� to
find the energy eigenvalues �for given values of nr and ��,
the integral is numerically integrated, carefully taking into
account the behavior at the end points. The results for the
ground electronic state of Mg2 are also illustrated in Fig. 2
and tabulated in Table I.

Fig. 2. The energy levels of the ground state of Mg2 model

Table I. Energy levels of the ground electronic state of Mg2 modeled by a
6-12 and tabulated potentials; 1 hartree=27.212 eV=219 474.6 cm−1.

6-12 Tabulated

nr Energy �Hartree� Energy �cm−1� Energy �Hartree� Energy �cm−1�

0 −0.001 792 −393.334 70 −0.001 844 −404.809 93
1 −0.001 479 −324.526 78 −0.001 621 −355.698 09
2 −0.001 202 −263.896 04 −0.001 411 −309.753 28
3 −0.000 961 −211.021 16 −0.001 219 −267.442 97
4 −0.000 754 −165.462 87 −0.001 041 −228.407 22
5 −0.000 578 −126.762 71 −0.000 877 −192.419 09
6 −0.000 430 −94.441 50 −0.000 727 −159.448 74
7 −0.000 310 −67.998 21 −0.000 591 −129.738 24
8 −0.000 214 −46.908 66 −0.000 470 −103.252 70
9 −0.000 140 −30.624 50 −0.000 363 −79.759 48
10 −0.000 085 −18.572 47 −0.000 271 −59.396 85
11 −0.000 046 −10.154 04 −0.000 192 −42.219 23
12 −0.000 022 −4.745 78 −0.000 130 −28.499 65
13 −0.000 080 −17.465 70
14 −0.000 043 −9.521 47
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D. Probability distributions

The classical radial probability distributions associated
with the calculated eigenvalues can be easily evaluated. The
probability that the two atoms in the molecule are separated
by a distance r is proportional to the inverse of the radial
momentum. That is,

P�r�dr 

dr

pr
=

dr

2��E − Vr�

. �19�

The longer it takes the atoms to go from r to r+dr, the
smaller the velocity and hence the higher the probability of
finding the system in this configuration. As in quantum me-
chanics, the total probability of finding the system with any
nuclear separation must be unity.

Classical probabilities have been evaluated for both the
6-12 �Fig. 3� and numerical �Figs. 3 and 4� potentials. For
small values of nr, the curve is similar to a harmonic poten-
tial probability distribution �all potential wells can be repre-
sented by a harmonic potential near the potential minimum�.
For larger values of nr �Fig. 4�, the distribution is no longer
like the harmonic oscillator, and is asymmetric. Notice that at
the close-separation turning point, where the slope of the

the 6-12 potential and the tabulated potential from Ref. 6.

Fig. 3. Classical probability distribution for a low quantum state using the
ed by
6-12 potential �dotted curve� and the tabulated potential �solid curve�.
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potential is very large, the probability density rapidly in-
creases, while at the far-separation turning point, where the
slope of the potential is very small, the probability density
increases more slowly. This behavior is reasonable because
the radial momentum is changing very quickly where the
potential is changing quickly and slowly where the potential
is less steep.

The calculated probability distributions for the 6-12 and
the tabulated potentials allow us to calculate expectation val-
ues for various radial quantum numbers. The classical expec-
tation value �rn� for an integer n is given by

�rn� = 
−�

�

rnP�r�dr , �20�

where P�r� is the normalized probability. For a semiclassical
diatomic molecule, the bounds of integration extend from
one turning point to the other because the probability of tun-
neling outside the potential is zero �a quantum mechanical
treatment requires infinite bounds�. Table II lists several ex-
pectation values for both potentials for various quantum
numbers.

E. Effect of angular momentum

The effective potential Vr depends on the angular momen-
tum �see Eq. �5��. For small values of � the potential is
affected only slightly because the centrifugal term is much

Fig. 4. Classical probability distribution for a high quantum state evaluated
from the numerical potential.

Table II. Expectation values for different energy levels for the 6-12 potential
and the tabulated potential. Measured in units of Bohr radiin.

nr �rn� 6-12 Tabulated

10 r−1 0.085 716 6 0.098 163 9
10 r1 12.082 10.666 6
10 r2 149.861 117.755
11 r−1 0.077 873 4 0.093 237 3
11 r1 13.350 4 11.270 6
11 r2 183.286 131.637
12 r−1 0.068 881 8 0.088 746 6
12 r1 15.148 7 11.939 4
12 r2 236.293 148.301
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less than U�r� �the reduced mass in the denominator for Mg2

is about 21 000 me�. For higher values of �, there is an ap-
preciable change as illustrated in Fig. 5 for �=0 and �=26,
using the 6-12 potential. As a result of the change in the
effective potential, the energy levels are affected as is evident
in Table III. The effect of the angular momentum on the
energy levels of the numerical potential is illustrated in Fig.
6. As � increases for the same value of nr, the energy level
separation increases as �2, exhibiting that rotational effects
are not negligible even at room temperature energies
��1/40 eV� or an angular momentum of only 10� for nr

=4 for the case of Mg2.

III. CLASSICAL ATOMIC ORBITS

The classical orbit of the two atoms in a diatomic mol-
ecule can be found using the same methods as were used to
solve the two-body problem. From Eq. �3� the angular veloc-
ity �̇ is then

�̇ =
L

�r2 . �21�

A differential equation for d� /dr can be written as2

Fig. 5. Comparison of the effective potentials of different angular momenta
for the 6-12 model.

Table III. Comparison of energy levels in the 6-12 and tabulated potentials.
Energy in hartrees.

6-12 Tabulated

nr Energy ��=0� Energy ��=26� Energy ��=0� Energy ��=19�

0 −0.001 792 −0.001 492 −0.001 844 −0.001 77
1 −0.001 479 −0.001 193 −0.001 621 −0.001 51
2 −0.001 202 −0.000 932 −0.001 411 −0.001 3
3 −0.000 961 −0.000 707 −0.001 219 −0.001 11
4 −0.000 754 −0.000 516 −0.001 041 −0.000 93
5 −0.000 578 −0.000 357 −0.000 877 −0.000 77
6 −0.000 43 −0.000 229 −0.000 727 −0.000 63
7 −0.000 31 −0.000 128 −0.000 591 −0.000 5
8 −0.000 214 −0.000 052 −0.000 47 −0.000 38
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d�

dr
=

d�

dt

dt

dr
=

�̇

ṙ
, �22�

and thus we can solve for � as a function of r as

��r� = �̇

ṙ
dr = L

r2

dr

2��E − Vr�

. �23�

For a closed orbit to exist, the angular difference between
two successive transits through a given turning point must be
a rational fraction times 2� �that is, after a finite number of
oscillations between the turning points, the orbit will exactly
repeat itself�. This condition can be expressed as2

a

b
2� = � L

r2

dr

2��E − Vr�

, �24�

where a and b are nonzero integers �a is allowed to be zero,
but this value corresponds to zero angular momentum, which
is not interesting�. The ratio a /b is the fraction of a full
revolution �2� rad� that the orbit completes between two
successive transits through a given turning point. After b
such oscillations, the orbit closes on itself. The integral is
readily evaluated for an arbitrary central potential using the
numerical methods described in Sec. II.

For a central potential U�r�
rn, with n an integer, a non-
circular, closed orbit exists only for n=−1 and 2, correspond-
ing to a Kepler-Coulomb potential and the harmonic poten-
tial, respectively.2 For a diatomic molecule, it is not
appropriate to estimate the orbits using these potentials �es-
pecially the harmonic oscillator for low quantum numbers�.
However, the potential in a diatomic molecule is not propor-
tional to an integer power of the internuclear separation, so
closed orbits are not guaranteed.

The closed orbit integral in Eq. �24� was evaluated for
many interesting cases, which are listed in Table IV; one case
is plotted in Fig. 7. Note that these orbits are not closed,
because in general the radial and angular periods are not
commensurate. As illustrated in a recent review of Einstein’s
early work,14 the orbits do not satisfy the ergodic hypothesis,
that is, the trajectory does not uniformly cover all available
phase space. Although every allowed spatial point is reached,
at each point the radial momentum has only one of two pos-

Fig. 6. Comparison of the effective potentials and energy levels of the
tabulated potential with varying angular momenta. The lowest potential
curve corresponds to �=0, the next, the �=5 state and so on.
sible values. The system point in phase space moves on the

576 Am. J. Phys., Vol. 74, No. 7, July 2006
surface of an invariant torus,15 with the outward motion in
Fig. 7 corresponding to the upper surface and the inward
motion to the lower.

IV. CONCLUSION

The bound-state two-body problem was solved numeri-
cally using two central potentials, one analytic and one nu-
merical. No approximations were used, except for the nu-
merical evaluation of various integrals.

The energy levels and average powers of r tabulated here
provide the basis for a realistic conceptual model of a mo-
lecular potential. Moreover, the position probability densities
from which they were computed can be used to extend the
model through energy perturbation or level overlap calcula-
tions. This approach has advantages over the common for-
mulation in which a molecular potential is modeled as a
one-dimensional simple harmonic oscillator perturbed by a
Morse potential, which is expanded as a power series in the
displacement from equilibrium x=r−r0. In the one-
dimensional simple harmonic oscillator formulation the un-
perturbed model has equally spaced energy levels and is
symmetric about the equilibrium. The perturbation alters the
equal spacing, but does not remove the symmetry about the
equilibrium point because only even powers of x are non-
vanishing in this basis. In the numerical formulation we have
applied these features are already present in the unperturbed
system.

Table IV. The fraction of one complete revolution traversed between two
successive transits through a given turning point for the two potentials dis-
cussed in the text. These fractions indicate degree of precession of the non-
closed orbit.

nr � 6-12 Tabulated

0 1 0.002 572 0.003 801
0 25 0.066 345 0.113 63
8 8 0.046 039 0.040 746
12 15 0.294 944 0.121 137
14 1 0.031 534 0.009 785
Fig. 7. Orbit in a 6-12 potential with nr=12 and �=15.
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The methods can be used in an undergraduate course and
provide insights into the types of approximation strategies
used in current research. It is simple to extend the non-
relativistic analysis to the relativistic realm. As is outlined in
Ref. 1, the radial momentum can be solved for from the
relativistic expression

E + mc2 = 
p2c2 + m2c4 + U�r� , �25�

and

p2c2 = �pr
2 +

L2

r2 �c2, �26�

where L is a discrete multiple of �. We need only to solve for
pr and substitute the result into Eq. �10� to determine the
allowed energy levels for an arbitrary U�r�.
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