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§1. The Existing Formalism

It is-clear that, for periodic mechanical systems of one degree of

frcedom, the quantization condition isl
dg
jpdqa = [p rrai ah . (1)

The integration is performed over the antire period of the motion; 4q denotes
the coordinate, ﬁ the conjugate momentCum of the svstem, Further, the
theoretical work_of Sommetfeld demonstrates that for systems with £ degrees of
fréedom, the single quantization condition must be replaced by £ quantization

conditions. According to Sommerfeld these % conditions are
[pidqi = nih . : (2)

This formulatioﬁ is not independent of the chofce of coordinates, so ir can
only be proven correct for certain choices of coordinates. It 1is Oniy when
such a choice has been made and the q; are perfodic functions of time that the
conditions of Eq. (2) are applicable.

‘

The more recent work of Epstein {and Schwarzschildf provides a fundamental
improvenent to this theory by providing eriteria by which to choose the
coordinates. Epstein bases his choice of coordinates on Jacobi's theorem.

Let H = H(qi,pi,ts be the Hamiltonian of the system, which appears in the

canonical equations

» i
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and which — provided it does not contain time .explicitly — 1s identical with
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v cnergy E. If 3(41.--o.qz,ul.---.a2,t) i{s a total integral (Hamilcton's

neincipal Function) of the Hamilton—-Jacobl partial differential equation

3 , . 35
st + H(qi ] aqt) 0 * (5)
then the solutions of the canonical equations are
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If the Hamiltonian does not contain time explicitly, which is assumed in

what follows, then Eq. (S)hmay be satisfied by use of the Ansatz&

S = w-Et

where E i{s a constant and W (Hamilton's Characteristic Function) does not

depend explicitly upon time. Equations (5), (6) and (7) are then replaced by

auv :
H(q ’ """_] =€ ' (5a)
w1 7 8q
i
w
aui Bi
(6a)
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*_
In this case one has
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wow the flest equation in Eq. (6a) represents 2-1 equations, in the last
l,lll,_nlon ag is replaced by the constant E, and ﬁn by the constant e
Epstein showed that 1f the coordinates are chosen so that Hamlilton's

characteristic Function has the form

o= % A CUD T (8)

where Wy 1s a function of only 1y and not the other qj's, then Sommerfeld's
quanrization condition, Eq. (2), will be valid provided the coordinates are
perindic functions.

In spite of the success of Sommerfeld's and Epstein’s generalization of

the quantum principle'in treating systems of several degrees of freedom, it

sti1l remains unsatisfactory in that according to Eq. (8) it 1is dependent upon
a separation of varilables. Such a separation of variables is not related to
the quantum problem. This paper proposes a small modification of the
Sommevrfeld-Epstein condition in order to avoid this drawhback. I will briefly
outline the baslc thoughts in the next section, and then in the following

carry them out more precisely.

§2. The Modifled Formalism

For systems of one degree of frecdom, pdq 1s an invariant, that is,
independent of the choice of the coordinate. However, for systems of several
degrees of freedom, the individual products pidqi are not invariants;
consequently the quantization conditions (2) do not lead to an invariant
result. Only the sum } pidqi, which extenes ovaer all £ degrees of freedom,

- 1s tnvariant. Ome can derive a set of invariant quantization conditions {from

the single invariant sum) in the following manner: Let us consider the pi as



ranctions of the qq- Then one can consider the py as a vector (covariant
”1character) on the f-dimensional space of the qy- 1f one then draws an
,epitrary closed curve, in coordinate space, which need not be a "trajectory”

of the mechanical system, the line integral
[ Lpgday (9

performed over this curve, {s an lnvariant. 1f the pi are any arbitrary

functions of the dy» then 1n general the integral (9) will have a different

value for each closed curve. However, 1if

_...__--..._.-]i= (10)

which follows if the p; are derivable from a functioh,5 W, as

ol

then the integral (9) has the same value for all closed curves which can be
continuously deformed into each other.6 Further, the integral (9) vanishes for
all curves that can be contracted into a single point by a continuous change.
Now if the coordinate sSpace, with its assoclated momentum vector field is
multiply connected, then there are closed paths that cannot be contracted to a
point by means of a continuous change.7 1f this is the case, W 1s not a single
valued (but an infinitely multivalued) function of the q., and in general the
{ntegral (9) will be different from zero for such a curve. Mreover, there
will exist a finite number of closed curves, CE’ in gq-space, to which, by

means of a continuous change, all closed curves are reducible. In this sense

one can prescribe a finite number of quantization conditions
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1n my opinion these must repléce the quanttzatiOn.condittnns (2). We would
.xpect that the number of equations (11), which cannot be reduced into one
inother, are equal to the number of degrees of freedom of the system. If it
s smaller, then we have a case of "degeneracy.”

The basic idea, which has been investipated above, will be explained in

<omewhat more detail in the following.

§3. A Deseriptive Derivation from the Hamilton-Jacobi Differential

Equation

1f a point, P, in the coordinate space, with the coordinate qy and
associated with the canonical momentum coordinate p,, is given, then the
motion is completely determined by the canonical equations (3) and (4).* As a
result, corresponding to every point on a trajectory L, there is a definite
velocity, that is, the p; are determined as functions of the qq on L. 1If for
each point P on a (4-1) dimensional "surface” in coordinate space, the q, and
py are given, then assoclated with every point in coordinate space is such a
trajectory L. If the P, on the surface are contfnuous functions of the qy,
then these trajectories will continuously fill the coordinate space (or a part
thereof). There will be a specific trajectory passing through every point (qi)
of the coordinate space; thus each of these points will also be associated with
a specific momentum coordinate. From this it is clear that there is a vector

field Py associated with coordinate space. We wish to formulate the law of

this vector field.

*
It is again assumed that H does not depend explicitly on time.



~({—
1f we consider the Pi» in the canonlcal system of equations (3), as

(unctions of the qq> we then must replace the left-hand sides by

9py 34y

2.'____—"' ’
X aqk at

Jhich by (4) may in turn be replaced hy

9Py au
aqk Bpk )
Thus in place of (3) we obtain
-1 ap
oR_ oH 1, 0 . (12)

It is this system of 2 linear differential equations that defines the pk's as
functions of qk's.

Now we ask whether there exists a function W from which one can derive
the momentum vector fleld, and for which the conditions (10) and {1Ca) are

fulfilled. If this is the case, Eq. (12) takes the form

oH s 2Pk -0 .

LIRS
9q; i Py 99y

This equation shows that H is independent of the q - Thus functions W of the
desired kind exist, e.g., the W's that satisfy the Hamilton-Jacobi equation
(5a), or the S that satisfies equation (5).

It has been shown that equation (3) can be replaced by equation (7a) and

(5a), or by (7) and (5). We shall now demonstrate that the system of equations

(4) are fulfilled by (6a) or (6), even though this is of no importance for the
subsequent discussion. After integration of (5a) one can express the py as

functions of the q; by virtue of (7a). The equations (4) form a system of
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tal differential equations which determines the qi's as functions of time.
\ccording to the theory of differential equations of first order, this system of

tatal differential equations is equivalent to the partial differential equation

22 4 3-0 . (13)
K Pp 39 °F

fquation (13) is satisfled by ¢ = as/aai, provided S is a complete integral of

(5). This can be seen by placing this value of ¢ in the left-hand side of (13),

+qus obtaining, using (7,

) 3H 3°s  37s
i B(BJ/qu) 3q, 3a; dtda

or

3 .
~2—Iu , =) =
3a, LICH aak) e

vhich vanishes because of (5). From this it follows that equation (&) is

integrable by means of (6) and (6a).

§4. EEE_Pi'Field of a Unique Trajectory

Having shown, 1In §3, that there exist momentum flelds Py such that
flpidqi is path independent, we now come to an essential polint, which I have
intentionally omitted in the previous sketch of basic thoughts in §2. 1In the
arguments of §3, we ha?e explored the p,-field by the means of (£-1) infinites
of trajectories, which £111 the classlcally allowed region of coordinate space.
We now follow the undisturbed motion of an isolated system through an infinitely
long time and trace the trajectory in the q ~space. Two cases may occur:

1) in the course of time, the trajectory comes arbitrarily close to every
point in the classically allowed reglon of coordinate space, OU

2) the trajectory 1is confined in a continuum of fewer than £ dimensions.

(An example is the case of exactly closed orbits.)
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case 1 represents the general situation while Case 2 is a speclalization.
\« an example of 1, we imagine the motion of a point mass under the influence of
+ central force, described by two coordinates that determine the position of the
viat in the plane of motion. Case 2 occurs, for example, when the attractive
tarce law 1s exactly proportional to l/rz, and when the deviation from the Kepler
" aotlon arising from the relativigtic theorv is ignored; the orbit 1is then closed,
and 1ts points form a continuum of only- one dimension. Considered in three
timensional space, the central motion is always a motion of type 2, since the
trajectory can be accomquated in a continuum of two dimensions. In working
vith three dimensions, one must consider the central motion as a speclal case
of 2 more complicated (non-central) force law (for example éhat of Epstein's
study of motion in the Stark effect).

The following argument is based on the general case l. Consider an element
dt of q;-space. A trajectory will pass through this element infinitely often.
Corresponding to each such crossing 15 a momentum vector. A priori, two
fundamentally different types of trajectories are possible.8 Type a): the Py
vector repeats itself, so that only a finite number of p,;~-vectors belong in dt.
In this case the p, are single or multivalued functions of 9y Type b): there
appear infinitely many p;~sSystems at the point cnnsidered. In this case the
Py cannot be represented as a function of 9 -

One notices immediately that type b) excludes the quantization condition
formulated in §2. Classical statistical mechanics on the other.hand describe

essentially only type b); only in this case is the microcanonical ensemble

) *
equivalent to the time averaged ensemble.

*
In the microcanonical ensemble there exist systems which for given qg
arbitrary (with the proper cnergy) p; exist.
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Summarizing, we note that application of the quantization condition (11)
.oquires that (1) trajectories he of tvpe a) and, i1) that the individual
rraJectories determine a function W from which ;he momentum field can be

torived. (However, see "Note added in proof,” Ed.)

§5. The Rational Coordinate Space

It has already been mentioned that the py are, in genéral, multivalued
-unctions of the q9y+ We consider, as a simnle example, the circular motion of
a point under the attractive force of a fixed center. The point moves in such
a way that its distance from the attractive center oscillates periodically
between a minimum value T and a maximum valuye T, If one considers a point in
the space of 94, that is, a point on the coordinate space annulus whose limits
are both of the circles with radii 9] and Ty then in the course of time the
trajectory will come infinitely close to 1t, or — 1less precisely -- pass
through it. However, for the passage of a portion of the orhit with increasing
T, or a portion of the orbit with decreasing r, the radial component of the
velocity has different signs; the p, ‘re donble-valued functions of q,.

The inconvenience for visualization cansed hy this fact 1s best removed
by means of the well-known method introduced into function theory by Riemann.
We imagine that we double the surface of a circular ring, so that two congruent,
¢ircular ring-shaped sheets lie on ton of each other. On the unper annulus we
imagine the orbit sections with positive dr/dt together with the assoclated
Vector p,,, and on the lower annulus those sections with negative dr/dt together
with the associated vector P+ At both circumferences we imagine the two
sheets are connected, since the orbit must cross from one circular sheet to the

other whenever the trajectory touches one of the  boundary circumferences. It
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(¢ easily seen that along the circles the p, on both sheets are équal.
interpreted on this double surface, the p, are not only continuous bhut also
single valued functions of the q,-

On this double surface there are ohviously two types of closed paths,
which can neither be contracted to a point by a continuous change, nor be
reduced to each other. Figure 1 shows an example of each of the two (Ll and
LZ) types; the parts of the path which lie on the lower sheet are drawn
dotted. All other closed paths may, by a continuous change on the doubled
surface, either be contracted into a point or deformed into one or more paths
of types L, and L,. The quantum conditfon (11) would here have to be applied

to the two path types Ll and L,.

Fig. 1

It is clear that this consideration gener=lizes for all motion that
fulfills the condition of $4. One has to imagine the phase space 1is
respectively divided into a number of "sheets” which are connected along (£-1)
dimensional "surfaces” in such a way that in order to interpret the resulting
structure the p, are single valued and (with respect to crossing from one
[sheet] to another) continuous functions. This auxiliary geometrical
construction we will denote as the "rational phase space.” The quantum
principle (11) ought to be applicable to all contours, which are closed in

rational coordinate space.
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In order for the quantum principle In this formulatlion to have an exact

..aning, the integral [ } pyda;, performed over all closed curves In ratinnal

-

i
S

space that can be transformed continuously into one another, must have the
«ane value. The proof 1s to be carried out according to the familiar scheme.
tet Ly and L, be closed curves in rational 1;-space (see Fig. 2), which,
paintalning the direction of motion can be continuously transformed into one
another. Then the line plotted in the figure is a closed curve which can he
contracted continuously into a point. From this it follows, due to (10), that
the integral, performed over the plotted line, vanishés. If one bears in mind

that the integrals, performed over the infinitely adjacent joining lines nlAz

and ByB,, are equal to one another as a result of the single valuedness of the

Py in the rational q -space, it follows that the Integrals performed over L1

and L, are equal.

A
AL~ 2
Bl (i#”// Bi//
L) L2
Fig. 2

Finally, we note that the function W is infinitely multivalued even in
the rational qy-space. However, according to the quantum principle this
multivaluedness is thé simplest concelvable. That is, 1f W has the value W*
at a particular point in‘ratiopal q,-space, then the remaining values of the

function are W* + nh, where n is an integer.

Y, 1
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Further reflection on condition (11) given at the end of §4 for the
wpplicability of the quantization condition (115 reveals that it is always
atisfied. That (s, the following principle is true:t TIf the motion
jetermines a momentum field then there exists a function from which this
field may be obtained by Eq. (10a).

According to Jacobi's principle,- every motion of a system can be derived
from a total integral W of (5a). Thus there exists locally at least one

anction W of the qq» from which the Py of a system can be computed

We must now remenmber that W is ohtained with the help of a partial differential
equation. Thus if we want to know how W changes for a system in the course of E

fts motion, we must integrate the differentlal equation along the trajectory to

obtain the continuation of W. Now if the orbit, after a certain (VERY leng) E
time, closely approaches the vicinity of a point P, through which the orbit |
has previously passed, then aw/aqi produces that momentum for both times.
There are however two cases. Corresponding to motion of type "b" (see
§4), on each return to P one should not expact cto return to the previous values
of BW/aqi. On the contrary, one should expect to encounter a new value of Py
each time the orbit returns to P. Consequently 1t is not possible to find a
global representation of the Py {or W) as a function of the Q. Corresponding
to motion of type "a,” however; the Pj-vectors eventually reappear as the
coordinate configuration repeats, then the BW/aqi'can be represented globally

as (multfple valued) functions of Q. Thus 1if a pi~fie1d exists for the

infinitely continued motion, then a funcrion W (a) exists.

e LT

m——— B L ——— —_—
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»o restate our conclusions as follows: 1If there exist % integrals of the

. equations of motion of the form

Rk(qi,pi)'= const. , (14)

More the Ry's are algebraic functions of the p,, then ) pyda; 1is always a

rotal differential. The quantization condition states that the integral
: lpidqi' performed over an irreducidle curve, should be a multiple of h.
-ye quantization condition coincides with the Sommerfeld-Epstein condition if,
.wocifically, every py depends only upon the associated qj- If there exist

¢over than £ integrals of type (14), as Poincare has proven for the three-hody

aroblem, then the py cannot be represanted (globally) as functions of the q,,

and even the modified form of the Sommnerfeld-Epstein quantization condition

({.e., that of Eq. (11)] fails.
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Twotnotes
iqyhsequent work by Brillouin (1926), Keller (1958), and Maslov (1972) has shown

that even the one~dimensional quantization conditions must be modified to read
[ pdq = (n + a/4d)h

vhere the value of the parameter o 1s determined by counting the number of
caustics (i.e., boundaries connecting the sheets or surfaces on which the p
ave single valued in the qi) which the integration path crosses., For further
discussion of this parameter the reader is referred to the work of Berry and
Mount (1972), Percifal (1976), and Voros (1976).

2See Goldstein (1950), Chapter 9, for a clear and informative discussion of
Hamilton—-Jacobl theory. I have changed the notation in this paper to
correspond to Goldstein's notation.

3Bor.h S and W are generating functions, which are usually chosen to be of type
Fz(q,P), using the notation of Goldstein (1950). If we make this chofce and

then choose the constants, at's, to be the action variables, then the Bi's

are the angle variables and develop linearly in time, i.e.,

By = wt+6, .

4This is a Legendre transformation f‘rom the time-dependent representation of
classical mechanics to the time—independent formulation.

SEinstein calls W a "potential,” I have translated this as "function.”

6It should be noted that these results are analogous to Cauchy's theorem with
'regard to Integration in the complex plane.

7By continuous change, Einstein means any deformation of the closed path on the
surface of the invariant torus which does not require the path to he broken.

8
A pedagogical discussion of the nature of these regular and irregular types

of classical motion is given by i:rry (1978), and references therein.
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