Quantum coins, dice, and children: Probability and quantum statistics
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We discuss counterintuitive aspects of probabilities for systems of identical particles obeying
guantum statistics. Quantum coins and childf®vo level systemsand quantum dicémany level
system$ are used as examples. It is emphasized that, even in the absence of interactions,
(ant)symmetrizations of multiparticle wave functions destroy statistical independences and often
lead to dramatic departures from our intuitive expectations.20@® American Association of Physics
Teachers.

[. INTRODUCTION states are essentially empty. In other words, the temperature
T should be chosen in such a way thab<T<A. If such
onditions are satisfied, what is the probability that the out-
¥ome is two “heads?” The answer depends on which statis-
tics the coins obey.

(1) With classical statistics, i.e., where the particles are
stinguishable, there are four possible outcomes:

One of the most fundamental differences between classic
and quantum mechanics is the necessity of introducing qua
tum statistics—Bose—Einstein statistiédor particles with
integer spins and Fermi—Dirac statisfiégor particles with
half-integer spins—for systems of identical particles. As pariy;
of the standard physics curriculum, quantum statistics are
usually introduced in courses on statistical physics or quan- HH, HT, TH, TT. 1
tum mechanics with special emphasis on their applications o )
on statistical systems. For example, Bose—Einstein statisticace all four outcomes amepriori equally likely, the prob-
provide a natural understanding of the blackbody spectrunPility for HH is 1/4. This is applicable to tossing macro-
and the Fermi theory of electronic bands of condensed matté&COPIC coins, where quantum effects are negligible.
systems has its foundation in Fermi—Dirac statistics. (2) With Bose-Einstein statistics, where the allowable

On the other hand, probability theories with quantum staStates must be symmetric under exchange, there are only
tistics are rarely discussed. This is a curious omission, givefl"ée possible outcomes:
the_.close connecti.on between.clasfsical statistics _and prob- HH, (HT+TH)/vVZ, TT. )
ability theory. In this letter, we fill this gap by studying sev-
eral simple examples on quantum systems of identical pat€onsequently, the probability for HH increases to 1/3. This
ticles with incomplete information. The results are oftenis applicable, for example, to a simple system of two bosons
intriguing and counterintuitive. It turns out that, by introduc- in an external potential with doubly degenerate ground states
ing quantum statistics, statistical independence between mekrbeled as H and T. It is also applicable to two photons in a
surements on different particles is lost even in the absence @&ctangular optical cavity with dimensioms<ax b(a>b).
interactions between these particles. These examples can Bach a cavity has two degenerate ground states, which can
useful in teaching quantum statistics as they highlight thebe labeled as H and T, respectively. Then the probability of

differences between classical and quantum statistics. finding both photons in the H state is 1(Fhis example has
been studied in Dirac’sThe Principle of Quantum
Mechanics.)

Il. QUANTUM COIN TOSSING (3) With Fermi—Dirac statistics the outcomes HH and TT
We will start with the simplest possible example—the &€ forbidden, as the allowable states must be antisymmetric

quantum coin tossing problentOur quantum coin tossing Under exchange; there is only one possible state:

problem has little to do with another problem with the same (HT=TH)/V2. 3)
name in quantum information theoyyEach quantum coin is

a particle in one of the two possible quantum states, labeledhe probability for HH is obviously zero. This is applicable
“heads” (H) or “tails” (T), which area priori equally to a system of two fermions in an external potential with
likely. It is clear that the probability of getting a “heads” is doubly degenerate ground states.

50%, regardless of the statistics of the coin. Now consider The above analysis clearly shows that the outcomes of
tossing a set of two coins, in other words we are preparing aneasurements on the two coins are not statistically indepen-
mixed state for which all distinct allowable quantum two- dent. Classically, two systems are usually regarded as statis-
particle states ara priori equally likely. These conditions tically independent if they do not interact with each other.
are physically realizable for systems with two low-lying This, however, is not necessarily true for quantum mechani-
single particle discrete levels, which are well separated frontal systems of identical particles, where the two-particle
the other levels. More specifically, both the energy splittingwave function is entangled unless it can be written as the
between the two states, and the interaction energy between product of two single-particle wave functions. More pre-
particles in these stateg, are much smaller than the tem- cisely, for probability applications where one studies mixed
perature, so that by equipartition both states are equallgtates, correlations occur unless the two-particle density ma-
likely to be occupied. The temperature is in turn muchtrix can be factored into two density matrices, each describ-
smaller thanA, the energy splitting between these two low- ing one of the particles. Bosonifermionic) wave functions,
lying states and the rest of the spectrum, so that these highbowever, are obtained via symmetrizati@ntisymmetriza-
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tion) of independent two-particle wave functions, and suchworld is beyond the scope of this papeBut what if we
symmetrizations or antisymmetrizations destroy statisticahssume that the children obey quantum statistics instead? In
independence. It is manifestly clear in the case of fermionsorder to study this question, we will reformulate the above
The Pauli exclusion principle, decreeing that two identicalpuzzle in the following way to make it applicable to quantum
fermions cannot be in the same state, is incompatible witlparticles.
statistical independence. The analogous effect for bosons is Consider two identical particles, each being equally prob-
Bose enhancement, which states that bosons are more likeple of being in one of two quantum states: either ®yor
to be found in the same state than statistically independemgirl (G) at the same spatial position, with all distinct allow-
particles. This simple example of quantum coin tossing illus-able gender combinations beiagriori equally likely.(Here
trates, in a very compelling way, the differences betweerthe terminologies “boy” and “girl” are used in a meta-
classical and quantum statistics. phorical sense only—real children are distinguishable classi-
We mention in passing that one can easily generalize theal objects. Recall the discussion at the end of the previous
above analysis to the following problem. Fordice, each section) We will adopt the following shorthand: “the par-
equally likely to be any ok state[one of which is indicated ticle is a B” stands for “the particle is in statB.” Then
by a closed circle(®)], what is the probability that all of questionsl) and(ll) can be rephrased as follow:
them end up being in the " state? For distinguishable o ) o
particles there ar&" distinct possible outcomes, and the (I) One particle is selected in a random manner. If itis a B,
probability for any one of them ik ". For fermions the Whﬁt '; t?he prc;_b?blllty that the otger gne IIS also a B;‘?th .
probability for an “all @ state” is trivially 0 (for n>1), and (I1) Both particles are measured and at least one of them is

a B. What is the probability that the other is also a B?
for bosons it is easy to show that there a‘fé{,‘( 1y distinct P y

possible outcomes. Since these outcomes are all equalBoth of these questions can be easily answered by listing the
likely, the probability for the “all ® state” is 1/(‘*2*1), elements of the spaces of possible combinations. For distin-
which is always larger thak—". In other words, Bose sta- guishable children, the space of possible combinations is
tistics always increases the chance of finding two identicalBB: BG, GB, GG. Out of the four combinations, three of

bosons in the same state; Bose enhancement is really an éR€m have at least one B, but among them only one is BB,
hancement[It is important to note that the above analysis te answer to questidil) is 1/3, as forecasted above. On the

holds if and only if there are exactly accessible states as other hand, since all four combinations are equally probable,
stated in the problem. The answer will be different if, for @d for each outcome both particles are equally likely to be
example, there ark doublets(i.e., % accessible stateand ~ Selected, there arexd2=8 equally likely cases:

one of the doublets is labeled “head$.” BB. BG. GB. GG
Finally, a word of caution: Real coins and dice do not -~ =~ ' =~ ' = @
behave like quantum coins and dice—they are essentially BB, BG, GB, GG,

classical objects. Coins and dice are always distinguishable . L . . .
from one another, while the discussion above is only app"_vvhere the underlined particle is being selected. Since in four

cable to indistinguishable particles. Even common quantun®f these cases B is selected, and among them in only two
systems such as electrons in an external magnetic field dg?Ses is the remaining particle a B, the answer to quesition
not behave like quantum coins as described above. Th§ 2/4=1/2. This answer reflects the fact that the two par-
analysis above is valid only if there are exactly two allow-ficles are presumed to be statistically independent, and
able states, while an electron in a magnetic field has two spiknowledge of one of the two children does not have any
statesfor each accessible spatial quantum state. There are implication for the other child. _ _
even more allowable states for real coins and dice, which are The situation is dramatically changed if these children
distinguished not only by the spatial location but also forobey guantum statistics instead. It is easy to see that for
physical variations. As a result, terminologies such adermionic children, the BB combination is forbidden by the
“guantum coins” should be taken in a metaphorical sensd>auli exclusion principle, and hence the answer to both ques-
only. tions above is 0. For bosonic children, with the space of

possible combination beingBB,(BG+GB)/v2,GG}, two

out of the three combinations have at least one B, and one of

I11. CONDITIONAL PROBABILITIES: THE them is BB, so the answer to questi@h) is 1/2, in contrast
QUANTUM CRIB to 1/3 for the case with distinguishable children. The analogy
of Eq.(4) is

Now we will move on to conditional probabilities, which
are even more intriguing and counterintuitive. Consider the BB, (BG+GB)/v2, GG,
following famous problem. (5)

BB, (BG+GB)/v2, GG.
(I) Two children sleep in a crib. If one is chosen at random ) ) )
and turns out to be a boy, what is the probability that both!n three of these cases B is selected, and since in two of them

are boys? the remaining particle is also B, the answer to questipis
(I1) Two children sleep in a crib. If at least one of them is 2/3, not 1/2. Again, we see that Bose statistics enhances the
a boy, what is the probability that both are boys? probability of finding two identical bosons in the same state.

In the above, we have analyzed the problems by listing all
The answer is well known: 1/2 for questioh, 1/3 for ques- possible combinations. This becomes less practical for more
tion (I). These answers presume that the two genders arecomplicated problems, and one may wonder if it is possible
priori equally likely, and also that the children are distin- to re-analyze these problems in a way which can be gener-
guishable objects and their genders are statistically indepemlized to more complex settings. Since we are studying
dent.(Whether these assumptions are strictly true in the reaiixed states, a natural description is via density matrices.
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Both questiongl) and(ll) will be re-analyzed in the Appen- first child. As a result, the probability distribution &is a

dix by using density matrix formalism. However, the remain-sharply peaked Gaussian arouRe- 1/2 for both questions
der of this papetexcept the Appendixis in fact accessible (111) and(1V). On the other hand, one can study this problem
without reference to density matrix formalism. for bosonic children by enumeration. There are1 distinct

allowable gender combinations:

IV. CONDITIONAL PROBABILITIES: THE .
QUANTUM DAY CARE CENTER Cc={k boysn—k girls}, O<k=n, )
with all of these combinationa priori equally likely, i.e.,
P(k)=1/(n+1). As a result, the probability foR=k/n is

Considern quantum childreriwheren>1) in a day care P(R=k/n)=1/(n+1), wherekis an integer between 0 and
center, where by the equal opportunity laws all distinct al-n @nd hence &R<1. Whenn—c, this approaches the uni-
lowable gender combinations aaepriori equally likely. We ~ form probability distribution
will define R as the ratio of quantum boys to the total number dP(R)
of children in the day care center. Then we pose the follow- fy(R)= iR

ing questions.

Question(lV) asks for the probability distribution d® on
the condition that the first child selected is a boy. After the
%election, there are onty—1 quantum children remaining in
the quantum day care center, and hence the number of boys
left can be any integer between 0 amet 1. Now the prob-
For distinguishable children obeying classical statistics, staability is P(k)=1/(n+1) for each gender combinatidd,,
tistical independence implies that the outcome for the rewhich after one boy is selected is left wikh-1 boys in the
mainingn—1 children is not affected by the outcome for the quantum day care center, so by Bayes’ formula one has

We will now move on from the crib to the quantum day
care center. Consider the following problem.

=1, <R>OEJRfO(R)dR:1/2. )

(Il') What is the probability distribution dR?

(IV) One child is selected at random, who is found to be
boy. What is the probability distribution @ for the remain-
ing children?

P(m)=P(m boys leftfirst child selected is a boy
=P(m+1 boys before selectidfirst child selected is a boy
_P(first child selected is a bom+1 boys before selectioR(m-+1 boys before selection
}‘zoP(first child selected is a boy boys before selectioP(j boys before selection
_(m+1)/nX1(n+1) 2(m+1)
31 oj/nx1(n+1) n(n+1)’

®

[We will give a brief description of Bayes’ formula for expectation value dRis 2/3, i.e., we expect two-thirds of the
readers who are not familiar with probability theory. Let remaining quantum children to be boys, having determined
H;j (j=1,...N) be N mutually exclusive events, with prob- that a single childout of a huge day care centés male! A
abilities P(H;). ThenP(H,|A), the conditional probability litlle quantum knowledge goes a long way in this problem.
of a particularH, upon the condition that another eveft As the number of children in the quantum day care center
occurs, is given by Bayes’ formula: tends to infinity, i.e..n—o, the conditional probabilityP

P(HP(A|H,) approaches a linear probability distribution:

PHA) S P(H)P(AH))" © _dP(R) _ _f _
_ _ _ 1(R)=——=—-=2R, (R);=| Rfy(R)}dR=2/3, (12
Discussions of Bayes’ formula can be found in most standard dR
tsgég‘]mks on probability theory. See, for example, Ffaer i agreement with the conditional expectation value obtained
S _ above.
Returning to Eq(8), one can easily check that the prob-  ag 3 |ast example, we generalize the previous case to the
abilities of different possible outcomes add up to unity, quantum die rolling problem.
n-1 n-1 2(m+1) (V) A quantum die is a quantum mechanical partice,
> Pm=> =1. (10)  priori equally likely to be in one ok possible stategAgain,
m=0 m=0 n(n+1) the terminology “quantum die” is used in a metophorical

sense only—real dice are distinguishable classical objects.
Consider tossing a set of quantum dicewheren>1), by
2m(m+1) 2 which we mean we are preparing a mixed state for which all
mE:O mP(m)sz:O Wzg(n_l)- (1) gistinct allowable quanturm particle states are priori
equally likely. Let's label one of the states “state 1” and
Since there aren—1 quantum children remaining in the defineR to be the fraction of quantum dice being in state 1.
guantum day care centdR=m/(n—1), and the conditional Thenn’ coins are selected at random aNg of them turn

The conditional expectation value of is
n—-1 n—-1
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out to be in state 1N, of them in state 2, etc., such that Dirac in Ref. 5. There are also discussions in Griffitaad
N;+N,+---+N=n’<n. What is the probability distribu- Stowée which_share th_e philosophy of this paper; the specific
tion of R for the remaining dice? This is a straightforward €xamples being considered, however, are different from the

generalization of question@ll) and (IV), which are recov- ones discussed here. In particular, none of these discussions
ered by settin=2, N,=0, andN,;=0 in question(lll) or  Studied conditional probabilities, which give the clearest and

N, =1 in question(IV). For distinguishable dice, by statisti- the most counterintuitive manifestation of the differences be-

cal independence, the probability distributionffs sharply ~ Ween classical and quantum statistics.

peaked around &/ We will show in the Appendix, by using Returning to the question of why these issues are not
density matrix formalism, that the conditional probability brought up in most undergraduate textbooks, the reason, we

A 2 A believe, lies in the observation that these particularly coun-
distribution ofR for the remaining bosonic dice is terintuitive results occur only in systems with a finite number

i, Ny, N (R)= R (1-R) 2"l of accessible levels. This condition is rarely met in important
physical systems; as a result, these subtleties are seldom dis-
B(vy, vyt t 1)), (13 cussed in most undergraduate textbooks, which understand-

ably tend to focus on systems with more immediate applica-
tions. However, we believe our examples can highlight the
differences between classical and quantum statistics, and de-
serve some discussion in undergraduate classrooms.
(RN, N, NkEJ’ Rfn, n,,..N (RIAR The main lesson of this discussion is the lack of statistical
independence between identical particles in quantum statis-
=y (vt v+t ). (14)  tics. For the outcomes of measurements on two particles to
be statistically independent, the wave functions of the two
V. DISCUSSION particles must be disentangled. In other words, the density
matrix describing the two-particle mixed state must be fac-
We emphasize that the examples above are not merelprizable into two separate density matrices, each describing
academic but may be experimentally realizable and testabl@ne of the particles. For identical particles obeying quantum
For example, a Bose—Einstein condensatE-spin-1 atoms  statistics, however, their density matrices are always en-
(F spin is the total spin of the atom, which is the quantumtangled due tdantjsymmetrizations. As a result, the out-
mechanical sum of the total angular momentum of the eleccomes of measurements on identical particles are always cor-
tron system and the nuclear spprovides a natural realiza- related, violating statistical independence.
tion of a system of quantum dice with=3, where the three
states correspond ,=1, 0, and—1 along some axig. Al ACK NOWLEDGMENT
distinct allowable combinations oF spins area priori
equally likely as long as the system is isotropic, or alterna- Support of this research by the U.S. Department of Energy
tively, the temperature is sufficiently high that the aniso-under Grant No. DE-FG02-93ER-40762 is gratefully ac-
tropic term in the Hamiltonian is negligible, while at the knowledged.
same time being low enough to support a Bose—Einstein
condensate. If such a scenario is realizable, a randomly e {PPENDI X
tracted atom from the condensate is equally likely to be i

any of the three spin states. If the first atom turns outto be i Here we will re-analyze questiori§—(1V) in the density

the F,=1 state, however, Eq(14) [with k=3 and  matrix formalism, which has the advantage of being a sys-
(N1,N2,N3)=(1,0,0)] predicts that half of the remaining tematic procedure and which can be easily generalized to

where v;=N;+1 andB(x,y) is the beta function, and the
conditional expectation value & is

atoms will also be in thé&,=1 state. systems of arbitrary numbers of particles and accessible
In our discussion, we have referred to the particles astates.
“coins” (with states heads and tails“children” (with Let us start with a single quantum coin, with the density

states boy and girland “dice” (with states labeled by dgts  matrix

It must be understood that these terminologies are being used _ ; 1

in a merely metaphorical sense. Real children do not spon- p=3[H)H|+3[TXT], (19

taneously fluctuate between boy states and girl states. Maand for two quantum coins obeying classical statistics,

roscopic coins and dice are always distinguishable from onéeing distinguishable the two-particle density matrix is

another, both by physical variations and by their locations in _

space. Quantum statistics applies only to particles that ark=pP ©Pp

indistinguishable and that share the same physical location. = %|HH)HH|+ % |HT)XHT|+ 7 |[THXTH|+3[TTXTT|, (16)
We have seen that counterintuitive results often arise - . .

when one tries to study probabilities for systems with iden-2d the coefficient of the|HH)(HH] gives the probability of

tical particles obeying quantum statistics. Given the simplic-9etting two “heads” when a set of two coins is tossed. No-

ity of our examples, one may wonder why they are not dis_tlce_that statl_stlcal m_depe_ndence is manifest, as _the two-

cussed or even mentioned in most undergraduate textbooldrticle density matrixp. is the product of two single-

on quantum physics or statistical mechanics. We have aftarticle density matricep. On the other hand, for quantum

tempted a literature search for similar discussions; as far a&0ins obeying bosonitfermionic statistics, the two-particle

we know, there is no mention of these topics in most standensity matrix is obtained by by (ant)symmetrization,

dard textbooks on quantum mechanics and/or statistical — _1 1 1

physics. On the other hand, as mentioned before, the quan- Pee=NeeSpaS=5|HH)HH| +3[S)KS| +3[TTXTT]

tum coin tossing problem with two coins was discussed by  pep=AepApsA=|ANA|; (17)
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whereS and A are the symmetrization and antisymmetriza- .o (22)
tion projection operators, respectively; th's are normaliza- . ) ) )

tion constants to ensure that the density matrices are properly k-1=€'“*-1sin; Sin6,: -sin 6y, COSO 1,
normalized, i.e., Tpge=Tr pgp=1, and

1S)=(HD)+TH)V2,  |A)=(HT)=[TH)V2. (18 Note that while areal unit vector in R¥ lies on a

Again, the probabilities of getting two “heads” can be read (k—1)-dimensional sphere and hence is described by

off as the coefficients of the operatptH)(HH|. The coeffi-  angles ¢;, a complex unit vector in Cck lies on a

cients are 1/3 and 0 for bosonic and fermionic statistics, re¢2k—1)-dimensional sphere an#dl extra phasesa; are

spectively, confirming the values obtained through listing.needed.

After all, the density matrix formalism is simply a systematic  The density matrix of a state with atoms o>1), all

way to generate and organize the list of all possible combis o vi-aq in the® direction. is given by

nations, with the probability of each combination appearin '

as the coefficient of the respective projection operator. pr=(1/n! )(A})“|O><O|(A,~)”. (23
As for the problems on conditional probabilities, the con- . -

dition decreed in questiofil), namely that at least one of the HOWeVer, as stated in the problem, all distinct allowable

quantum children is a boy, can be imposed by projecting Oui;qmblnatlons are equallly likely. As a res-u.lt, the densné/ ma-

the subspace of “all girls” by the projection operatBe= 1 trix p for such a state will be a superpositiongffor all 1,

r=€'%sin g, sinf, --sin b, _,Sin by _;.

—|GG){(GG|, with 1 denoting the identity operator. With I'(k/2)k! . . oo

acting on the two-particle density matricege and pgp PO~ % aWZnT fdfl dri---drydri8((r/—1)

above(and renaming “H” as “B” and “T” as “G” ), the

projected density matrices are X (AHM0)(0](AH)", (24)
FBEETBEPPBEPZ%|BB><BB|+%|3><3|, where the asterisks represent complex conjugation and
o 19 T(ki2k!/(27*"n1) is an overall normalization factor to
pro=NepPproP=[A)A|, ensure that Tpo=1. Since the angleg; are the phases of

ri, this density matrix can be rewritten as

oo
| RCECTATN

where the\’s are again normalization constants. Again, the
conditional probabilities of BB can be easily read off. 2T (k/2) k!
The condition decreed in questigh), that a randomly PO~ "5 K2 qar

h - n!
chosen quantum child turns out to be a boy, can be imposed

by using the “boy annihilation operatorag, satisfying 2rday,  day :
| _ [ S e niadroNolA. (@9
ag/mg boysmg girls)=mg|mg—1 boysmg girls). o 2m 2w
(20)

_ _ _ o Then we can express the real unit vectfr;...,[r,|) in
After randomly taking a child out of the crib and finding that terms of the angle, . Integrating over the Dirac delta dis-
it is a boy, the density matrix of the remaining child is tribution &(|F|—1) gives a factor of 2*2/(2T"(k/2)), and

Pee=Agedspeean=3|B)(B|+3|G)(G, po can be recast as

"~ v (21 1 2rda;  deyg 4
Pro=A\rpagprpap=|G)(Gl, po=rpy | dfc o ﬁ"'ﬁ(AF)WOXOKAF)n

where as befora’s are normalization constants. The condi- 2md q
tional probabilities that the remaining quantum child is a boy :f dﬂcf Wﬂ...ﬂpQ (26)
(so that both quantum children are bpysgain appear as 0o 2w 27 70
coefficients.

In the remainder of the Appendix, we derive the answerdVhere
(7) and (12) to the quantum day care center problem for k-1 k-1
bosonic children. Instead of tackling questidis) and(1V) dQc=[] dPY=]] (k—j+1)sin] 6; coso, d;
specifically, we will study the more general question). =1 =1
Questions(Ill) and (IV) are recovered by setting=2, N, o=ml2 (27)
=0, andN;=0 in question(lll) or N;=1 in question(IV). j dpi=1,

Recall that the “state 1 annihilation operatorg;, anni- 6=0
hilates a quantum die in state 1, and one can analogousifhe interpretation of Eq(26) is clear. The measurdQ
define a; for other states, with £j<k. For anycomplex  gives the probability distributiori)(6;) in the domain[0,
unit vectorr=(rq,...,ry) satisfyingE}‘=l|rj|2=1, the linear  #/2],
combipation A;:F-é (where éz(al,....,ak)) sfelt.isfigs f“)(ej)dejs(k—jJrl)sink*j 6, cosh,
[A7,Ar]=1 (with 7 also set to unity, and is the annihilation
operator for a quantum die in a particular state described by W/Zf(j)(a-)da—l
the “polarization vector,”f. It is convenient to parametrize 0 ER
the components af in the following way:

(28)

, On the other hand, the phases are equally likely to take
r,=e'“1cosé,, any value between 0 andr2

r,=e'“2sin @, cosb,, f(a))=1/2m. (29)
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Note that the probability distribution of all three anglés RNi(1—-R)N2**Nf  (R)

and the phases; are independent of each other. fny N, N (R)= TTRM(1-R)" "Mf, (R)dR
We are interested in evaluating the expectations of the ">~~~ =

number operators; under the density matri¢26). It is con- CRTH1-R)yrrnct

venient to introduce the observali®=ng/n, denoting the T B(w,vptty) (31)

fraction of quantum dice in state 1. Notice that this definition
of R coincides with that in problem(lll). Since n;
=ncog 6, the observabI® can be re-expressed in terms of
the anglesd; asR=cos ¢;. It is straightforward to rewrite
dP®)(6,) in terms ofR, f1(R)=2R, (32

dQc=f,. dR)AR, fo (R)=(1-R)*"?%(k—1), (30  which agrees with E¢(12).

where the subscripts remind us that no die of any state hass. N. Bose, “Planck’'s law and light quanta hypothesis,” Z. Ph3s,

been removed. In particular, fér=2, we have the answer to ,178-181(1924. . o
A. Einstein, “Quantentheorie des einatomigen idealen gases,” Ber. Akad.

question(lll): The probability distribution oR is given by Wiss. Berlin, 261-2671924: 3—14(1925: 18-25(1925,

fO(R) =1 3E. Fermi, “Zur quantelung des idealen einatomigen gases,” Z. P36ys.
Now, with the distribution functionfy,...,o(R), it is 902-912(1926.

straightforward to solve problertV), which is to evaluate 4P. A. M. Dirac, “On the theory of quantum mechanics,” Proc. R. Soc.

" - s - - . London, Ser. A112, 661-677(1926.
the conditional probability distribution given that coins 57 "\~ Dirac, The Principles of Quantum Mechanics (Clarendon, Ox-

have been removed, and among theimof them are found  ¢orq, 1967.
to be in statg. The density matrix after the selection, which °D. A. S. FraserProbability and Statistics: Theory and Applications (Dux-
can be written as py n,.. Nkz)\(a?lalz\'zmaf") Jbury, North Scituate, MA, 1996 . . .

N N N L2 o B. R. Roe,Probability and Satistics in Experimental Physics (Springer,
Xpo(allazz---akk)T, where\ is a normalization constant New York, 1992.

_ . . a nor . . rk . . o ]
and p, is the density matrix defined in E426). Sincep, VDV;)(J)'(‘GCr'ImtShS,'\:E‘“fggg'O” to Quantum Mechanics (Prentice—Hall, Engle
#pgo, the conditional probability distribution of R is no %K. Stowe,St’atistical Mechanics and Thermodynamics (Wiley, New York,

longer given byfg,...,o(R), but instead 1984.

reproducing Eq(13) with »;=N;+1. In particular, withk
=2 and (\N;,N,)=(1,0), questionV) reduces to question
(IV) with the answer

FERMI'S THEORY OF TROUT FISHING

Fermi took up angling, says Segrébut he went about it in a peculiar way. He had tackje
different from what anyone else used for trout fishing, and he developed theories about the way
fish should behave. When these were not substantiated by experiment, he showed an obstinacy that
would have been ruinous in science.” Fermi insisted on fishing for trout with worms, arguing that
the condemned creatures should be offered an authentic final meal, not the dry flies of tradition.

Richard RhodesThe Making of the Atomic Bomb (Simon & Schuster, New York, 1986pp. 567-568.
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