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We discuss counterintuitive aspects of probabilities for systems of identical particles obeying
quantum statistics. Quantum coins and children�two level systems� and quantum dice�many level
systems� are used as examples. It is emphasized that, even in the absence of interactions,
�anti�symmetrizations of multiparticle wave functions destroy statistical independences and often
lead to dramatic departures from our intuitive expectations. ©2000 American Association of Physics

Teachers.

I. INTRODUCTION

One of the most fundamental differences between classical
and quantum mechanics is the necessity of introducing quan-
tum statistics—Bose–Einstein statistics1,2 for particles with
integer spins and Fermi–Dirac statistics3,4 for particles with
half-integer spins—for systems of identical particles. As part
of the standard physics curriculum, quantum statistics are
usually introduced in courses on statistical physics or quan-
tum mechanics with special emphasis on their applications
on statistical systems. For example, Bose–Einstein statistics
provide a natural understanding of the blackbody spectrum,
and the Fermi theory of electronic bands of condensed matter
systems has its foundation in Fermi–Dirac statistics.

On the other hand, probability theories with quantum sta-
tistics are rarely discussed. This is a curious omission, given
the close connection between classical statistics and prob-
ability theory. In this letter, we fill this gap by studying sev-
eral simple examples on quantum systems of identical par-
ticles with incomplete information. The results are often
intriguing and counterintuitive. It turns out that, by introduc-
ing quantum statistics, statistical independence between mea-
surements on different particles is lost even in the absence of
interactions between these particles. These examples can be
useful in teaching quantum statistics as they highlight the
differences between classical and quantum statistics.

II. QUANTUM COIN TOSSING

We will start with the simplest possible example—the
quantum coin tossing problem.�Our quantum coin tossing
problem has little to do with another problem with the same
name in quantum information theory.� Each quantum coin is
a particle in one of the two possible quantum states, labeled
‘‘heads’’ �H� or ‘‘tails’’ �T�, which are a priori equally
likely. It is clear that the probability of getting a ‘‘heads’’ is
50%, regardless of the statistics of the coin. Now consider
tossing a set of two coins, in other words we are preparing a
mixed state for which all distinct allowable quantum two-
particle states area priori equally likely. These conditions
are physically realizable for systems with two low-lying
single particle discrete levels, which are well separated from
the other levels. More specifically, both the energy splitting
between the two states,�, and the interaction energy between
particles in these states,�, are much smaller than the tem-
perature, so that by equipartition both states are equally
likely to be occupied. The temperature is in turn much
smaller than�, the energy splitting between these two low-
lying states and the rest of the spectrum, so that these higher

states are essentially empty. In other words, the temperature
T should be chosen in such a way that�,��T��. If such
conditions are satisfied, what is the probability that the out-
come is two ‘‘heads?’’ The answer depends on which statis-
tics the coins obey.

�1� With classical statistics, i.e., where the particles are
distinguishable, there are four possible outcomes:

HH, HT, TH, TT. �1�

Since all four outcomes area priori equally likely, the prob-
ability for HH is 1/4. This is applicable to tossing macro-
scopic coins, where quantum effects are negligible.

�2� With Bose–Einstein statistics, where the allowable
states must be symmetric under exchange, there are only
three possible outcomes:

HH, �HT�TH�/&, TT. �2�

Consequently, the probability for HH increases to 1/3. This
is applicable, for example, to a simple system of two bosons
in an external potential with doubly degenerate ground states
labeled as H and T. It is also applicable to two photons in a
rectangular optical cavity with dimensionsa�a�b(a�b).
Such a cavity has two degenerate ground states, which can
be labeled as H and T, respectively. Then the probability of
finding both photons in the H state is 1/3.�This example has
been studied in Dirac’sThe Principle of Quantum
Mechanics.5�

�3� With Fermi–Dirac statistics the outcomes HH and TT
are forbidden, as the allowable states must be antisymmetric
under exchange; there is only one possible state:

�HT�TH�/&. �3�

The probability for HH is obviously zero. This is applicable
to a system of two fermions in an external potential with
doubly degenerate ground states.

The above analysis clearly shows that the outcomes of
measurements on the two coins are not statistically indepen-
dent. Classically, two systems are usually regarded as statis-
tically independent if they do not interact with each other.
This, however, is not necessarily true for quantum mechani-
cal systems of identical particles, where the two-particle
wave function is entangled unless it can be written as the
product of two single-particle wave functions. More pre-
cisely, for probability applications where one studies mixed
states, correlations occur unless the two-particle density ma-
trix can be factored into two density matrices, each describ-
ing one of the particles. Bosonic�fermionic� wave functions,
however, are obtained via symmetrization�antisymmetriza-
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tion� of independent two-particle wave functions, and such
symmetrizations or antisymmetrizations destroy statistical
independence. It is manifestly clear in the case of fermions:
The Pauli exclusion principle, decreeing that two identical
fermions cannot be in the same state, is incompatible with
statistical independence. The analogous effect for bosons is
Bose enhancement, which states that bosons are more likely
to be found in the same state than statistically independent
particles. This simple example of quantum coin tossing illus-
trates, in a very compelling way, the differences between
classical and quantum statistics.

We mention in passing that one can easily generalize the
above analysis to the following problem. Forn dice, each
equally likely to be any ofk state�one of which is indicated
by a closed circle����, what is the probability that all of
them end up being in the ‘‘�’’ state? For distinguishable
particles there arekn distinct possible outcomes, and the
probability for any one of them isk�n. For fermions the
probability for an ‘‘all � state’’ is trivially 0 �for n�1�, and
for bosons it is easy to show that there are (n

k�n�1) distinct
possible outcomes. Since these outcomes are all equally
likely, the probability for the ‘‘all � state’’ is 1/( n

k�n�1),
which is always larger thank�n. In other words, Bose sta-
tistics always increases the chance of finding two identical
bosons in the same state; Bose enhancement is really an en-
hancement.�It is important to note that the above analysis
holds if and only if there are exactlyk accessible states as
stated in the problem. The answer will be different if, for
example, there arek doublets�i.e., 2k accessible states� and
one of the doublets is labeled ‘‘heads.’’�

Finally, a word of caution: Real coins and dice do not
behave like quantum coins and dice—they are essentially
classical objects. Coins and dice are always distinguishable
from one another, while the discussion above is only appli-
cable to indistinguishable particles. Even common quantum
systems such as electrons in an external magnetic field do
not behave like quantum coins as described above. The
analysis above is valid only if there are exactly two allow-
able states, while an electron in a magnetic field has two spin
statesfor each accessible spatial quantum state. There are
even more allowable states for real coins and dice, which are
distinguished not only by the spatial location but also for
physical variations. As a result, terminologies such as
‘‘quantum coins’’ should be taken in a metaphorical sense
only.

III. CONDITIONAL PROBABILITIES: THE
QUANTUM CRIB

Now we will move on to conditional probabilities, which
are even more intriguing and counterintuitive. Consider the
following famous problem.

�I� Two children sleep in a crib. If one is chosen at random
and turns out to be a boy, what is the probability that both
are boys?

�II � Two children sleep in a crib. If at least one of them is
a boy, what is the probability that both are boys?

The answer is well known: 1/2 for question�I�, 1/3 for ques-
tion �II �. These answers presume that the two genders area
priori equally likely, and also that the children are distin-
guishable objects and their genders are statistically indepen-
dent.�Whether these assumptions are strictly true in the real

world is beyond the scope of this paper.� But what if we
assume that the children obey quantum statistics instead? In
order to study this question, we will reformulate the above
puzzle in the following way to make it applicable to quantum
particles.

Consider two identical particles, each being equally prob-
able of being in one of two quantum states: either boy�B� or
girl �G� at the same spatial position, with all distinct allow-
able gender combinations beinga priori equally likely.�Here
the terminologies ‘‘boy’’ and ‘‘girl’’ are used in a meta-
phorical sense only—real children are distinguishable classi-
cal objects. Recall the discussion at the end of the previous
section.� We will adopt the following shorthand: ‘‘the par-
ticle is a B’’ stands for ‘‘the particle is in stateB.’’ Then
questions�I� and �II � can be rephrased as follow:

�I� One particle is selected in a random manner. If it is a B,
what is the probability that the other one is also a B?

�II � Both particles are measured and at least one of them is
a B. What is the probability that the other is also a B?

Both of these questions can be easily answered by listing the
elements of the spaces of possible combinations. For distin-
guishable children, the space of possible combinations is
�BB, BG, GB, GG	. Out of the four combinations, three of
them have at least one B, but among them only one is BB,
the answer to question�II � is 1/3, as forecasted above. On the
other hand, since all four combinations are equally probable,
and for each outcome both particles are equally likely to be
selected, there are 4�2�8 equally likely cases:

B� B, B� G, G� B, G� G,
�4�

BB� , BG� , GB� , GG� ,

where the underlined particle is being selected. Since in four
of these cases B is selected, and among them in only two
cases is the remaining particle a B, the answer to question�I�
is 2/4�1/2. This answer reflects the fact that the two par-
ticles are presumed to be statistically independent, and
knowledge of one of the two children does not have any
implication for the other child.

The situation is dramatically changed if these children
obey quantum statistics instead. It is easy to see that for
fermionic children, the BB combination is forbidden by the
Pauli exclusion principle, and hence the answer to both ques-
tions above is 0. For bosonic children, with the space of
possible combination being�BB,�BG�GB�/&,GG	, two
out of the three combinations have at least one B, and one of
them is BB, so the answer to question�II � is 1/2, in contrast
to 1/3 for the case with distinguishable children. The analogy
of Eq. �4� is

B� B, �B� G�GB� �/&, G� G,
�5�

BB� , �BG� �G� B�/&, GG� .

In three of these cases B is selected, and since in two of them
the remaining particle is also B, the answer to question�I� is
2/3, not 1/2. Again, we see that Bose statistics enhances the
probability of finding two identical bosons in the same state.

In the above, we have analyzed the problems by listing all
possible combinations. This becomes less practical for more
complicated problems, and one may wonder if it is possible
to re-analyze these problems in a way which can be gener-
alized to more complex settings. Since we are studying
mixed states, a natural description is via density matrices.
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Both questions�I� and�II � will be re-analyzed in the Appen-
dix by using density matrix formalism. However, the remain-
der of this paper�except the Appendix� is in fact accessible
without reference to density matrix formalism.

IV. CONDITIONAL PROBABILITIES: THE
QUANTUM DAY CARE CENTER

We will now move on from the crib to the quantum day
care center. Consider the following problem.

Considern quantum children�wheren�1� in a day care
center, where by the equal opportunity laws all distinct al-
lowable gender combinations area priori equally likely. We
will define R as the ratio of quantum boys to the total number
of children in the day care center. Then we pose the follow-
ing questions.

�III � What is the probability distribution ofR?
�IV � One child is selected at random, who is found to be a

boy. What is the probability distribution ofR for the remain-
ing children?

For distinguishable children obeying classical statistics, sta-
tistical independence implies that the outcome for the re-
mainingn�1 children is not affected by the outcome for the

first child. As a result, the probability distribution ofR is a
sharply peaked Gaussian aroundR�1/2 for both questions
�III � and�IV �. On the other hand, one can study this problem
for bosonic children by enumeration. There aren�1 distinct
allowable gender combinations:

Ck��k boys,n�k girls	, 0
k
n, �6�

with all of these combinationsa priori equally likely, i.e.,
P(k)�1/(n�1). As a result, the probability forR�k/n is
P(R�k/n)�1/(n�1), wherek is an integer between 0 and
n and hence 0
R
1. Whenn→�, this approaches the uni-
form probability distribution

f 0�R ��
dP�R �

dR
�1, 
R�0�� R f 0�R �dR�1/2. �7�

Question�IV � asks for the probability distribution ofR on
the condition that the first child selected is a boy. After the
selection, there are onlyn�1 quantum children remaining in
the quantum day care center, and hence the number of boys
left can be any integer between 0 andn�1. Now the prob-
ability is P(k)�1/(n�1) for each gender combinationCk ,
which after one boy is selected is left withk�1 boys in the
quantum day care center, so by Bayes’ formula one has

P̃�m ��P�m boys left�first child selected is a boy�

�P�m�1 boys before selection�first child selected is a boy�

�
P�first child selected is a boy�m�1 boys before selection�P�m�1 boys before selection�

� j�0
n P�first child selected is a boy� j boys before selection�P� j boys before selection�

�
�m�1�/n�1/�n�1�

� j�0
n j /n�1/�n�1�

�
2�m�1�

n�n�1�
. �8�

�We will give a brief description of Bayes’ formula for
readers who are not familiar with probability theory. Let
H j ( j�1,...,N) be N mutually exclusive events, with prob-
abilities P(H j). Then P(Hk�A), the conditional probability
of a particularHk upon the condition that another eventA
occurs, is given by Bayes’ formula:

P�Hk�A ��
P�Hk�P�A�Hk�

� j P�H j�P�A�H j�
. �9�

Discussions of Bayes’ formula can be found in most standard
textbooks on probability theory. See, for example, Fraser6 or
Roe.7�

Returning to Eq.�8�, one can easily check that the prob-
abilities of different possible outcomes add up to unity,

�
m�0

n�1

P̃�m �� �
m�0

n�1
2�m�1�

n�n�1�
�1. �10�

The conditional expectation value ofm is

�
m�0

n�1

mP�m �� �
m�0

n�1
2m�m�1�

n�n�1�
�

2

3
�n�1�. �11�

Since there aren�1 quantum children remaining in the
quantum day care center,R�m/(n�1), and the conditional

expectation value ofR is 2/3, i.e., we expect two-thirds of the
remaining quantum children to be boys, having determined
that a single child�out of a huge day care center� is male! A
little quantum knowledge goes a long way in this problem.

As the number of children in the quantum day care center
tends to infinity, i.e.,n→�, the conditional probabilityP̃
approaches a linear probability distribution:

f 1�R ��
dP̃�R �

dR
�2R, 
R�1�� R f 1�R �dR�2/3, �12�

in agreement with the conditional expectation value obtained
above.

As a last example, we generalize the previous case to the
quantum die rolling problem.

�V� A quantum die is a quantum mechanical particle,a
priori equally likely to be in one ofk possible states.�Again,
the terminology ‘‘quantum die’’ is used in a metophorical
sense only—real dice are distinguishable classical objects.�
Consider tossing a set ofn quantum dice�wheren�1�, by
which we mean we are preparing a mixed state for which all
distinct allowable quantumn particle states area priori
equally likely. Let’s label one of the states ‘‘state 1’’ and
defineR to be the fraction of quantum dice being in state 1.
Then n� coins are selected at random andN1 of them turn
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out to be in state 1,N2 of them in state 2, etc., such that
N1�N2�¯�Nk�n��n. What is the probability distribu-
tion of R for the remaining dice? This is a straightforward
generalization of questions�III � and �IV �, which are recov-
ered by settingk�2, N2�0, andN1�0 in question�III � or
N1�1 in question�IV �. For distinguishable dice, by statisti-
cal independence, the probability distribution ofR is sharply
peaked around 1/k. We will show in the Appendix, by using
density matrix formalism, that the conditional probability
distribution ofR for the remaining bosonic dice is

f N1 ,N2 ,...,Nk
�R ��R�1�1�1�R ��2�¯�k�1/

B��1 ,�2�¯��k�, �13�

where� j�N j�1 andB(x,y) is the beta function, and the
conditional expectation value ofR is


R�N1 ,N2 ,...,Nk
�� R f N1 ,N2 ,...,Nk

�R �dR

��1 /��1��2�¯��k�. �14�

V. DISCUSSION

We emphasize that the examples above are not merely
academic but may be experimentally realizable and testable.
For example, a Bose–Einstein condensate ofF-spin-1 atoms
�F spin is the total spin of the atom, which is the quantum
mechanical sum of the total angular momentum of the elec-
tron system and the nuclear spin� provides a natural realiza-
tion of a system of quantum dice withk�3, where the three
states correspond toFz�1, 0, and�1 along some axisẑ. All
distinct allowable combinations ofF spins area priori
equally likely as long as the system is isotropic, or alterna-
tively, the temperature is sufficiently high that the aniso-
tropic term in the Hamiltonian is negligible, while at the
same time being low enough to support a Bose–Einstein
condensate. If such a scenario is realizable, a randomly ex-
tracted atom from the condensate is equally likely to be in
any of the three spin states. If the first atom turns out to be in
the Fz�1 state, however, Eq.�14� �with k�3 and
(N1 ,N2 ,N3)�(1,0,0)� predicts that half of the remaining
atoms will also be in theFz�1 state.

In our discussion, we have referred to the particles as
‘‘coins’’ �with states heads and tails�, ‘‘children’’ �with
states boy and girl�, and ‘‘dice’’ �with states labeled by dots�.
It must be understood that these terminologies are being used
in a merely metaphorical sense. Real children do not spon-
taneously fluctuate between boy states and girl states. Mac-
roscopic coins and dice are always distinguishable from one
another, both by physical variations and by their locations in
space. Quantum statistics applies only to particles that are
indistinguishable and that share the same physical location.

We have seen that counterintuitive results often arise
when one tries to study probabilities for systems with iden-
tical particles obeying quantum statistics. Given the simplic-
ity of our examples, one may wonder why they are not dis-
cussed or even mentioned in most undergraduate textbooks
on quantum physics or statistical mechanics. We have at-
tempted a literature search for similar discussions; as far as
we know, there is no mention of these topics in most stan-
dard textbooks on quantum mechanics and/or statistical
physics. On the other hand, as mentioned before, the quan-
tum coin tossing problem with two coins was discussed by

Dirac in Ref. 5. There are also discussions in Griffiths8 and
Stowe9 which share the philosophy of this paper; the specific
examples being considered, however, are different from the
ones discussed here. In particular, none of these discussions
studied conditional probabilities, which give the clearest and
the most counterintuitive manifestation of the differences be-
tween classical and quantum statistics.

Returning to the question of why these issues are not
brought up in most undergraduate textbooks, the reason, we
believe, lies in the observation that these particularly coun-
terintuitive results occur only in systems with a finite number
of accessible levels. This condition is rarely met in important
physical systems; as a result, these subtleties are seldom dis-
cussed in most undergraduate textbooks, which understand-
ably tend to focus on systems with more immediate applica-
tions. However, we believe our examples can highlight the
differences between classical and quantum statistics, and de-
serve some discussion in undergraduate classrooms.

The main lesson of this discussion is the lack of statistical
independence between identical particles in quantum statis-
tics. For the outcomes of measurements on two particles to
be statistically independent, the wave functions of the two
particles must be disentangled. In other words, the density
matrix describing the two-particle mixed state must be fac-
torizable into two separate density matrices, each describing
one of the particles. For identical particles obeying quantum
statistics, however, their density matrices are always en-
tangled due to�anti�symmetrizations. As a result, the out-
comes of measurements on identical particles are always cor-
related, violating statistical independence.
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APPENDIX

Here we will re-analyze questions�I�–�IV � in the density
matrix formalism, which has the advantage of being a sys-
tematic procedure and which can be easily generalized to
systems of arbitrary numbers of particles and accessible
states.

Let us start with a single quantum coin, with the density
matrix

�� 1
2 �H�
H��1

2 �T�
T�, �15�

and for two quantum coins obeying classical statistics�i.e.,
being distinguishable�, the two-particle density matrix is

�cl�� � �

� 1
4 �HH�
HH��1

4 �HT�
HT��1
4 �TH�
TH��1

4 �TT�
TT�, �16�

and the coefficient14 of the �HH�
HH� gives the probability of
getting two ‘‘heads’’ when a set of two coins is tossed. No-
tice that statistical independence is manifest, as the two-
particle density matrix�cl is the product of two single-
particle density matrices�. On the other hand, for quantum
coins obeying bosonic�fermionic� statistics, the two-particle
density matrix is obtained by�cl by �anti�symmetrization,

�BE��BES�clS� 1
3 �HH�
HH�� 1

3 �S�
S�� 1
3 �TT�
TT�

�17��FD��FDA�clA��A�
A�;
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whereS and A are the symmetrization and antisymmetriza-
tion projection operators, respectively; the�’s are normaliza-
tion constants to ensure that the density matrices are properly
normalized, i.e., Tr�BE�Tr �FD�1, and

�S��� �HT���TH��/&, �A��� �HT���TH��/&. �18�

Again, the probabilities of getting two ‘‘heads’’ can be read
off as the coefficients of the operator�HH�
HH�. The coeffi-
cients are 1/3 and 0 for bosonic and fermionic statistics, re-
spectively, confirming the values obtained through listing.
After all, the density matrix formalism is simply a systematic
way to generate and organize the list of all possible combi-
nations, with the probability of each combination appearing
as the coefficient of the respective projection operator.

As for the problems on conditional probabilities, the con-
dition decreed in question�II �, namely that at least one of the
quantum children is a boy, can be imposed by projecting out
the subspace of ‘‘all girls’’ by the projection operatorP�1
��GG�
GG�, with 1 denoting the identity operator. WithP
acting on the two-particle density matrices�BE and �FD
above�and renaming ‘‘H’’ as ‘‘B’’ and ‘‘T’’ as ‘‘G’’ �, the
projected density matrices are

�̄BE��̄BEP�BEP� 1
2 �BB�
BB�� 1

2 �S�
S�,
�19�

�̄FD��̄FDP�FDP��A�
A�,

where the�̄ ’s are again normalization constants. Again, the
conditional probabilities of BB can be easily read off.

The condition decreed in question�I�, that a randomly
chosen quantum child turns out to be a boy, can be imposed
by using the ‘‘boy annihilation operator’’aB , satisfying

aB�mB boys,mG girls���mB�mB�1 boys,mG girls�.
�20�

After randomly taking a child out of the crib and finding that
it is a boy, the density matrix of the remaining child is

�̃BE��̃BEaB�BEaB
†� 2

3 �B�
B�� 1
3 �G�
G�,

�21�
�̃FD��̃FDaB�FDaB

†��G�
G�,

where as before�̃ ’s are normalization constants. The condi-
tional probabilities that the remaining quantum child is a boy
�so that both quantum children are boys� again appear as
coefficients.

In the remainder of the Appendix, we derive the answers
�7� and �12� to the quantum day care center problem for
bosonic children. Instead of tackling questions�III � and�IV �
specifically, we will study the more general question�V�.
Questions�III � and �IV � are recovered by settingk�2, N2

�0, andN1�0 in question�III � or N1�1 in question�IV �.
Recall that the ‘‘state 1 annihilation operator,’’a1 , anni-

hilates a quantum die in state 1, and one can analogously
define a j for other states, with 1
 j
k. For any complex
unit vectorr��(r1 ,...,rk) satisfying� j�1

k �r j�2�1, the linear
combination Ar��r�•a� �where a� �(a1 ,...,ak)� satisfies
�Ar� ,Ar�

†��1 �with � also set to unity�, and is the annihilation
operator for a quantum die in a particular state described by
the ‘‘polarization vector,’’r�. It is convenient to parametrize
the components ofr� in the following way:

r1�ei�1 cos�1 ,

r2�ei�2 sin�2 cos�2 ,

] ] �22�

rk�1�ei�k�1 sin�1 sin�2¯sin�k�2 cos�k�1 ,

rk�ei�k sin�1 sin�2¯sin�k�2 sin�k�1 .

Note that while a real unit vector in Rk lies on a
(k�1)-dimensional sphere and hence is described byk�1
angles � j , a complex unit vector in Ck lies on a
(2k�1)-dimensional sphere andk extra phases� j are
needed.

The density matrix of a state withn atoms (n�1), all
polarized in ther� direction, is given by

�r���1/n! ��Ar�
†�n�0�
0��Ar��

n. �23�

However, as stated in the problem, all distinct allowable
combinations are equally likely. As a result, the density ma-
trix � for such a state will be a superposition of�r� for all r�,

�0�
��k/2�k!

2�3k/2n! � dr1 dr1* ¯drk drk* �� �r���1�

��Ar�
†�n�0�
0��Ar��

n, �24�

where the asterisks represent complex conjugation and
�(k/2)k!/(2�3k/2n!) is an overall normalization factor to
ensure that Tr�0�1. Since the angles� j are the phases of
r j , this density matrix can be rewritten as

�0�
2k��k/2�

2�k/2

k!

n! �0

�

�r1�d�r1�¯�rk�d�rk�

��
0

2� d�1

2�
¯ d�k

2�
�� �r���1��Ar�

†�n�0�
0��Ar��
n. �25�

Then we can express the real unit vector (�r1�,...,�rk�) in
terms of the angles� j . Integrating over the Dirac delta dis-
tribution �(�r���1) gives a factor of 2�k/2/(2k�(k/2)), and
�0 can be recast as

�0�
1

n! � d�C�
0

2� d�1

2�
¯ d�k

2�
�Ar�

†�n�0�
0��Ar��
n

�� d�C�
0

2� d�1

2�
¯ d�k

2�
�r� , �26�

where

d�C��
j�1

k�1

dP � j ���
j�1

k�1

�k� j�1�sink� j � j cos� j d� j ,

�27��
� j�0

���/2

dP � j ��1.

The interpretation of Eq.�26� is clear. The measured�C

gives the probability distributionf ( j)(� j) in the domain�0,
�/2�,

f � j ��� j�d� j��k� j�1�sink� j � j cos� j ,
�28��

0

�/2

f � j ��� j�d� j�1.

On the other hand, the phases� j are equally likely to take
any value between 0 and 2�,

f �� j��1/2�. �29�
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Note that the probability distribution of all three angles� j

and the phases� j are independent of each other.
We are interested in evaluating the expectations of the

number operatorsn1 under the density matrix�26�. It is con-
venient to introduce the observableR�nB /n, denoting the
fraction of quantum dice in state 1. Notice that this definition
of R coincides with that in problem�III �. Since n1

�n cos2 �1, the observableR can be re-expressed in terms of
the angles�1 as R�cos2 �1. It is straightforward to rewrite
dP (1)(�1) in terms ofR,

d�C� f 0,...,0�R �dR, f 0,...,0�R ���1�R �k�2/�k�1�, �30�

where the subscripts remind us that no die of any state has
been removed. In particular, fork�2, we have the answer to
question�III �: The probability distribution ofR is given by
f 0(R)�1.

Now, with the distribution functionf 0 ,...,0(R), it is
straightforward to solve problem�V�, which is to evaluate
the conditional probability distribution given thatn� coins
have been removed, and among themN j of them are found
to be in statej. The density matrix after the selection, which
can be written as �N1 ,N2 ,...,Nk

��(a1
N1a2

N2¯ak
Nk)

��0(a1
N1a2

N2¯ak
Nk)†, where � is a normalization constant

and �0 is the density matrix defined in Eq.�26�. Since�1

��0 , the conditional probability distribution of R is no
longer given byf 0 ,...,0(R), but instead

f N1 ,N2 ,...Nk
�R ��

RN1�1�R �N2�¯�Nk f 0,...,0�R �

�0
1RN1�1�R �N2�¯�Nk f 0,...,0�R �dR

�
R�1�1�1�R ��2�¯��k�1

B��1 ,�2�¯��k�
, �31�

reproducing Eq.�13� with � j�N j�1. In particular, withk
�2 and (N1 ,N2)�(1,0), question�V� reduces to question
�IV � with the answer

f 1�R ��2R, �32�

which agrees with Eq.�12�.
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FERMI’S THEORY OF TROUT FISHING

Fermi took up angling, says Segre`, ‘‘but he went about it in a peculiar way. He had tackle
different from what anyone else used for trout fishing, and he developed theories about the way
fish should behave. When these were not substantiated by experiment, he showed an obstinacy that
would have been ruinous in science.’’ Fermi insisted on fishing for trout with worms, arguing that
the condemned creatures should be offered an authentic final meal, not the dry flies of tradition.
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