
At the 11 May 1917 meeting of the German Physical So-
ciety, Albert Einstein, then a professor at the Univer-

sity of Berlin, presented the only research paper of his ca-
reer that was written on the quantization of energy for
mechanical systems.1 The paper contained an elegant re-
formulation of the Bohr–Sommerfeld quantization rules of
the old quantum theory, a rethinking that extended and
clarified their meaning. Even more impressive, the paper
offered a brilliant insight into the limitations of the old
quantum theory when applied to a mechanical system that
is nonintegrable—or in modern terminology, chaotic. Louis
de Broglie cited the paper in his historic thesis on the wave
properties of matter,2 as did Erwin Schrödinger in the sec-
ond of his seminal papers on the wave equation for quan-
tum mechanics.3 But the 1917 work was then ignored for
more than 25 years until Joseph Keller independently dis-
covered the Einstein quantization scheme in the 1950s.4

Even so, the significance of Einstein’s contribution was not
fully appreciated until the early 1970s when theorists, led
by Martin Gutzwiller, finally addressed the fundamental
difficulty of semiclassically quantizing nonintegrable
Hamiltonians and founded a subfield of research now
known as quantum chaos. 

Even today, Einstein’s insight into the failure of the
Bohr–Sommerfeld approach is unknown to the large ma-
jority of researchers working in quantum physics. It seems
appropriate, in this centennial of Einstein’s miracle year,
to put the achievement of his obscure 1917 paper in a mod-
ern context and to explain how he identified a simple cri-
terion for determining if a dynamical system can be quan-
tized by the methods of the old quantum theory. 

Motivation 
Einstein’s paper was titled “On the Quantum Theorem of
Sommerfeld and Epstein.” In his title, Einstein was ac-
knowledging physicist Paul Epstein, who had written a
paper relating the Sommerfeld rule to the form of the con-
stants of motion. Epstein’s name has not survived in the
context of the Sommerfeld rule, and the quantization con-
dition discussed by Einstein is now referred to as either
Bohr–Sommerfeld or WKB (Wentzel-Kramers-Brillouin)
quantization.

The 1917 article was written
shortly after Einstein completed his
groundbreaking work on the quantum
theory of radiation in which he intro-
duced the famous A and B coefficients
(see the article by Daniel Kleppner,
PHYSICS TODAY, February 2005, page
30). Einstein had come back to the
quantum theory after focusing in-
tensely from 1911 through 1915 on the

theory of general relativity. His deep involvement with
general coordinate transformations and curved-space
geometry likely motivated him to search for a coordinate-
independent formulation of the rules of the old quantum
theory.

Einstein begins his paper by saying that for one 
mechanical degree of freedom the quantization condition
is clearly

(1)

where q is a position coordinate, p is the associated mo-
mentum, h is Planck’s constant, and the time integral is
over one period T of the one-dimensional bound motion. In
higher dimensions, bound motion is not necessarily peri-
odic, but for bound separable motion—that is, bound mo-
tion for which each coordinate–momentum pair is inde-
pendent—Sommerfeld had proposed a straightforward
generalization: 

(2)

where d is the number of degrees of freedom, and Ti is the
period of the motion in each of the d separable coordinates.
Einstein comments:

Notwithstanding the great successes that have
been achieved by the Sommerfeld–Epstein ex-
tension of the quantum theorem for systems of
several degrees of freedom, it still remains un-
satisfying that one has to depend on the sepa-
ration of variables . . . because it probably has
nothing to do with the quantum problem per
se . . . the individual products dpi dqi in a sys-
tem of several degrees of freedom . . . are not
invariants, therefore the quantization condi-
tion, [equation 2], has no invariant meaning.

He then describes a “small modification” that allows a co-
ordinate-independent formulation of the quantization rules.

Einstein quantization
Einstein begins with a point emphasized by Henri Poin-
caré at the 1911 Solvay Congress: For a dynamical system,
S pidqi is invariant under coordinate transformations, and
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hence the line integral ∫S pidqi [ ∫p � dq is also invari-
ant. The integral is equal to the phase space action S of
classical mechanics 

(3)

where L is the usual Lagrangian of a mechanical system,
E is the energy, and r and r� are the final and initial points
of the trajectory, which requires a time t to traverse. 

Because ∇∇S ⊂ p(r), the momentum at r, one is
tempted to regard p(r) as the momentum field of the tra-
jectory, generated by taking the gradient of the function
S(E, r, r�). As is familiar from electrostatics, the line inte-
gral between two points of the gradient of a function is in-
dependent of the path taken between the points. As a con-
sequence, all such integrals over a closed loop vanish.
However, the “function” S and its gradient are not single-
valued because, as shown in figure 1, typical trajectories
for bound motion loop back on themselves and return to a
neighborhood of the point r. Indeed, the neighborhood is
typically visited an infinite number of times.

Einstein points out that when the motion has certain
properties, which will be specified in the next section, the
action S may be usefully viewed as a function on a d-torus,
the d-dimensional analogue of a doughnut. On that space,
the gradient of the action is single-valued and the mo-
mentum field of the trajectory, p(r) ⊂ ∇∇S, is uniquely de-
fined. Nonetheless, the line integral ∫p � dq does not van-
ish for all closed loops on the torus; instead, as Einstein
observes, exactly d independent loops—analogous to lin-
early independent vectors—give a specific nonzero value
to the line integral (see figure 2). The values of the coor-
dinate-invariant integrals depend on the energy of the dy-
namical system, so by demanding that each such integral
be quantized, one arrives at an implicit formula for the
quantized energy levels of the system without reference to
specific coordinates or to separability of the motion. Thus,
Einstein proposes the generalized quantization rule

(4)

where the Ci are d independent closed loops of a torus in
d dimensions, and the ni are the quantum numbers asso-
ciated with the energy levels of the system.

Einstein illustrates his construction with the exam-
ple of a point mass moving under the influence of a gen-
eral central force—that is, with a potential energy that
depends only on the radial distance from the center—in
the plane perpendicular to the particle’s conserved angu-
lar momentum. An electron moving around a hydrogen
nucleus is an example. Such systems are separable in
polar coordinates and could be solved by using the gener-
alized Sommerfeld condition, equation 2; Einstein, how-
ever, found them a convenient example to illustrate his
approach. 

Under the conditions specified in Einstein’s example,
any mass with nonzero angular momentum will revolve
around the center while oscillating in radial distance be-
tween its inner turning radius r1 and its outer turning ra-
dius r2. As long as the force law is not exactly proportional
to 1/r2 or r, the mass’s orbit will typically not close on it-
self: In astronomical terminology, it will precess. Einstein
would have been aware of that fact from his work on the
relativistic theory of the precession of the orbit of Mercury!
As a consequence of the precession, a single orbit will, after
many revolutions, define a momentum vector “field” every-
where in the annular region between the inner and outer

turning points, as illustrated in figure 2a. 
Inspection of the orbit reveals that the momentum

vector has exactly two possible values at each point in the
allowed region. They correspond to the opposite values of
the radial momentum that occur when the orbit passes
through the point heading outward or inward. A different
initial condition for the trajectory, as long as the angular
momentum is unchanged, would define the same vector
field, so the double-valued field is unique. Now, Einstein
says, one can just as well regard the red vectors of figure
2a as living on the top surface of a doughnut and the blue
vectors as lying on the bottom surface (see figure 2b).
That is, one can think of the momentum as being single-
valued on a torus. Given the force law and conserved an-
gular momentum, one can calculate the momentum field
everywhere on the torus and hence can compute any loop
integral of the type that appears in equation 4. Note here
a crucial point: In the Sommerfeld rule, the integrations
follow a trajectory, but the loop integrals of equation 4
may be evaluated along any convenient set of indepen-
dent loops.

For the central-force case considered by Einstein, one
of the loop integrals is particularly simple. Consider a loop
that, on the figure-2a annulus, travels around the center
in a circle just outside the inner turning radius. The mo-
mentum p must be purely azimuthal on that loop because
the radial momentum is zero at the turning radius. By
choice, dq is azimuthal so the loop integral is just
p(2pr1) ⊂ 2pL, where L is the angular momentum of the
motion. Equation 4 says that quantization is achieved by
setting 2pL ⊂ nh. In other words, L ⊂ n\, the familiar
Bohr rule for the quantization of angular momentum for
an arbitrary central force law. The second loop integral will
quantize the energy of the motion and its precise form will
depend on the particular force law. 

The remarkable insight
Based on what I’ve discussed to this point, Einstein’s paper
can be regarded as an elegant improvement on the
Bohr–Sommerfeld quantization rules, but not necessarily
as a work containing a deep physical insight. In the fourth
section of his paper, however, Einstein elucidates the na-
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Figure 1. Trajectory of a particle executing
bounded motion with energy E. The gradient of the
action S(E, r, r�), indicated by the red arrows, gives
the momentum at point r. The gradient, however, is
multi-valued in general because bound motion
loops back on itself. Albert Einstein showed that for
certain types of motion the momentum can be ex-
pressed as a single-valued vector field on a multi-
ply connected space analogous to the surface of a
doughnut.



ture and limitations of the old quantum theory in a man-
ner that was only appreciated by physicists more than 50
years later. 

The section begins, “We come now to a very essential
point which I carefully avoided mentioning during the pre-
liminary sketch of the basic idea [of equation 4].” Einstein
reconsiders the multivalued vector fields generated by a
trajectory, but no longer assumes a central force law. He
excludes the case of periodic closed trajectories as non-
generic. Thus he focuses on a bound trajectory that passes
an infinite number of times through each small neighbor-
hood dr in the classically allowed region of coordinate
space and observes, “A priori, two types of orbits are pos-
sible, obviously of fundamentally different characteris-
tics.” To paraphrase Einstein: An orbit of type (a) passes
through dr an infinite number of times with only a finite
number of different momentum directions, and an orbit of
type (b) passes through dr an infinite number of times with
an infinite number of different momentum directions. In
the latter case, the momentum p cannot be represented as
a multivalued function of r as it was in the central-force
example. He then remarks

One notices immediately that type (b) [motion]
excludes the quantum condition we have for-
mulated. . . . On the other hand, classical sta-
tistical mechanics deals essentially only with
type (b); because only in this case is the 
microcanonical ensemble of one system equiv-
alent to the time ensemble.

The equivalence Einstein cited is sometimes called the er-
godic hypothesis.

After clarifying that his method is limited to type (a)
motion, Einstein goes on to discuss some additional tech-
nical details, and ends the article with no further general
statements. The article, though, includes a supplement
added in proof that makes it clear that the type (b) motion
Einstein had identified is not just for the complex many-
particle systems of statistical mechanics:

If there exist fewer than d [constants of mo-
tion], as is the case, for example, according to
Poincaré in the three-body problem, then the
pi are not expressible by the qi and the quan-
tum condition of Sommerfeld–Epstein fails
also in the slightly generalized form that has
been given here.

Einstein put his finger on the key idea: It is not the
complexity or the number of degrees of freedom of the sys-
tem that matters. The dynamics of systems with fewer
constants of motion than degrees of freedom are funda-
mentally different from those of systems with at least as
many constants as degrees of freedom. In modern termi-
nology, the former type of system is nonintegrable and the
latter integrable. Physicists now understand that inte-
grable systems are highly exceptional and that the
generic case—the nonintegrable system—always has
some regions of phase space where the dynamics are
chaotic, that is, where trajectories are exponentially sen-
sitive to initial conditions. A chaotic trajectory covers its
constant-energy surface in phase space uniformly and the
phase-space average of some quantity over all points on
the surface will equal the time-average of the same quan-
tity along any such trajectory. 

Although Einstein probably did not understand the
implications of nonintegrability as fully as physicists do
today, he clearly understood intuitively, as evidenced by
his appeal to the three-body problem, the crucial relation-
ship between nonintegrability and the ergodicity assumed
in statistical mechanics. But even more extraordinary, he
understood that ergodic motion could not be quantized by
any simple generalization of the Bohr–Sommerfeld quan-
tization rules. That brilliant insight of his 1917 paper was
completely lost to science for some 50 years.

A modern perspective
To clarify the relationship between Einstein’s type (a) and
type (b) motion and what is now called regular and chaotic
motion, one can turn to dynamical billiards, which are
paradigms for the study of classical and quantum chaos.
A billiard is a 2D region of space in which a point mass
moves freely between perfectly reflecting walls: The dy-
namics are completely determined by the shape of the
boundary and the law of specular reflection. 

In the central-force example that Einstein considered,
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Figure 2. Momentum vector field generated by a particle
moving under a central force. (a) The motion is in the
plane perpendicular to the particle’s angular momentum
and is confined between inner and outer turning radii r1
and r2. The associated momentum is double-valued at all
points (see yellow circles) in the allowed region of motion.
The red vectors describe the parts of the trajectory moving
inward radially; the blue, those moving outward. (b) When
the red and blue vectors are mapped to the top and bot-
tom of a torus as indicated, they yield an irrotational,
single-valued momentum field. The Einstein quantization
rule, equation 4 in the text, requires that the momentum
integrated around each of two independent loops on the
torus yields an integer times Planck’s constant h. The figure
indicates two appropriate loops, labeled C1 and C2.



angular momentum is conserved. A billiard with the same
property is the circular billiard of radius R. In principle, if
a particle in the circular billiard were launched with pre-
cisely the right angle of incidence to the boundary, it would
execute a closed periodic orbit. For example, a particle
launched at 45° to the boundary would produce a square-
shaped orbit. But it would be practically impossible to
start a particle with an appropriate angle of incidence—in
technical terms, closed periodic orbits have zero measure
in phase space. Generic “quasiperiodic” orbits fill an an-
nular region between the boundary and an inner caustic
as shown in figure 3a. Each quasiperiodic orbit passes in
exactly two directions through any neighborhood in the al-
lowed region of motion, just as in the central-force exam-
ple presented earlier. Thus, the circular billiard can be
quantized, rather accurately in fact, by the method devel-
oped by Einstein and refined by Keller as detailed in the
next section.

By way of contrast, consider trajectories in the so-
called stadium billiard shown in figure 3b: All initial con-
ditions except a set of zero measure lead to chaotic motion.
Figure 3b indicates that every neighborhood is traversed
in an infinite number of directions; the billiard allows only
Einstein’s type (b) motion. Based on the theory of the
Hamiltonian transition to chaos developed in the 1940s,
1950s, and 1960s by Andrei Kolmogorov, Vladimir Arnold,
Jürgen Moser, and others, a generic billiard such as the
quadrupole shown in figures 3c and 3d exhibits a mixture
of regular and chaotic motion. Some initial conditions lead
to type (a) motion and others to type (b), a situation called
mixed dynamics. For mixed dynamics, the subset of quan-
tum levels corresponding to regular motion can be quan-
tized by the Einstein method, now known as the Einstein-
Brillouin-Keller or EBK method. The subset corresponding
to the chaotic region of phase space cannot be quantized
by any analytic method, although techniques do exist for

finding the contribution of the chaotic states to the 
density of states and other related quantities. A well-
established technique known as the Weyl expansion shows
that, to leading order in the system size, the same density
of quantum energy levels exists for classically chaotic sys-
tems, such as the stadium billiard, as for integrable sys-
tems, such as the circular billiard. Therefore, the question
arises: Why can’t the chaotic levels be found by some ver-
sion of the Bohr–Sommerfeld approach? Einstein’s insight
will reappear as the answer to this question.

Keller’s modification
Einstein’s work preceded the Schrödinger equation by
eight years, and Einstein had no way of knowing that his
quantization condition was essentially a means to find the
eigenvalues of a wave equation. I have found no record that
he reconsidered his approach after the wave equation was
discovered. 

For motion in a single dimension, the Bohr–
Sommerfeld quantization rule can be derived by using the
WKB ansatz familiar from undergraduate quantum me-
chanics. Specifically, one inserts into the 1D Schrödinger
equation a wavefunction of the form

(5)

where p(x) ⊂ {2m[E⊗V(x)]}1/2 is the local momentum in the
potential V(x), which is assumed to be slowly varying, and
x1 is a classical turning point of the potential. By insisting
that the wavefunction be single-valued, one obtains the
Bohr–Sommerfeld quantization condition, equation 1. Use
of the so-called connection formula yields a corrected con-
dition that includes the zero-point energy. 

The EBK quantization formula may be viewed as
arising from a higher-dimensional version of the WKB
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Figure 3. Billiards. In these particle
trajectories, a yellow circle repre-
sents a neighborhood of the starting
point, a red arrow represents an ini-
tial momentum, and green arrows
represent momenta on return. 
(a) Generic trajectories in a circular
billiard are quasiperiodic. The trajec-
tory visits any neighborhood of the
allowed region of motion an infinite
number of times, but in only a finite
number of momentum directions.
The system is integrable because an-
gular momentum and energy are
conserved, and every generic trajec-
tory exhibits Einstein’s regular type
(a) motion. (b) In the stadium bil-
liard, a generic trajectory returns to
any neighborhood of the allowed re-
gion in an infinite number of mo-
mentum directions. The system is
nonintegrable, and generically ex-
hibits only Einstein’s chaotic type (b)
motion. (c–d) In the quadrupole bil-
liard, the behavior of the trajectory
depends on initial conditions. Both
regular (c) and chaotic (d) motions
are possible. The quadrupole bil-
liard, with its mixture of quasiperi-
odic and chaotic dynamics, mani-
fests the generic behavior of
Hamiltonian dynamical systems.



ansatz. I focus on the case of 2D billiards, for which,
within the boundaries, the Schrödinger equation is just
the free-particle equation. In that case, one introduces the
wavefunction 

(6)

where k [ p/\ ⊂ (2mE)1/2/\. The functions Sn(x, y) are the
same as the action defined in equation 3 except that they
have been scaled by p to bring the factor of k out in front.
The semiclassical limit is defined by the wavelength l
tending to zero, or equivalently, the wave vector k tending
to infinity. In that limit, one inserts equation 6 into the
Schrödinger equation and seeks solutions to leading order
in l. The procedure yields two equations. One is an ap-
propriately scaled Hamilton–Jacobi equation for Sn(x, y)
and the other is the continuity equation ∇∇�J ⊂ 0, where J
is the usual particle current obtained from the wavefunc-
tion. The solutions of the two equations can be represented
as a set of lines of constant Sn(x, y)—wavefronts—and as-
sociated gradient fields ∇∇Sn(x, y) that are the rays associ-
ated with those wavefronts. 

For the simple case of the circular billiard, one needs
only two terms in equation 6. Moreover, the two ampli-
tudes are equal, A1 ⊂ A2 [ A(x, y), and so one needs to de-
termine the three functions S1, S2, and A. The condition
that the wavefunction vanish on the boundary implies that
kS1 ⊂ kS2 ⊗ p there (the waves destructively interfere)
and that the rays ∇∇S1 specularly reflect into the rays ∇∇S2.
Figure 4 displays functions S1 and S2 that satisfy the
stated requirements.

The final condition on the wavefunction is that it be
single-valued. That requirement will not be met for an ar-
bitrary value of the wave vector k; it will only hold true if

(7)

which is the Einstein quantization condition with a small
modification on the right-hand side—an additional phase
shift that is an integer multiple of p/2. In 1958, Keller de-
rived equation 7 from the equation-6 ansatz without any
knowledge of Einstein’s 1917 paper. 

The additional phase shift is due to leakage of the
wavefunction into classically forbidden regions. It is inde-
pendent of the value of the quantum number ni and de-
pends only on the number of turning points—that is, en-
counters with a caustic or boundary—in the real-space
projection of the loop Ci. Of course, Einstein could not have
anticipated the correction since it arises from the failure
of semiclassical theory near a turning point. In sum, Ein-
stein’s topological quantization condition, with Keller’s
minor improvement, is correct in the limit of short wave-
length, if solutions of the WKB/EBK form exist.

The failure of EBK
Where is the problem of chaotic motion lurking in the EBK
procedure? It is hidden in a very subtle place: The sum in
equation 6 must have a finite number of actions Sn(x, y).
But, as discussed in the caption of figure 4, if the motion
is on a billiard that generates only Einstein’s type (b) mo-
tion, then the number of terms in any would-be EBK so-
lution is infinite; no solution of the equation-6 form can be
constructed. If the billiard generates a mixture of type (a)
and type (b) motion, as for the quadrupole billiard shown
in figure 3, then EBK solutions can be found, but some per-
fectly good solutions of the Schrödinger equation are not
of the EBK form.

The EBK expansion seems innocent enough: Why does
it sometimes fail and sometimes succeed? The reason is
that the EBK procedure assumes that the wavefronts
move in straight lines for distances much larger than the
wavelength. That assumption goes into the derivation of
the Hamilton–Jacobi and continuity equations once the
EBK ansatz is inserted into the Schrödinger equation.

Intuitively, one can think of the EBK solutions as con-
sisting of a sum of waves that superpose to form a stand-
ing wave. The number of waves in the superposition is in-
dependent of wavelength, and each superposing wave
locally looks like a plane wave—that is, it has straight
wavefronts on the scale of the wavelength. But there is no
reason to expect that all of the solutions to the
Schrödinger equation will satisfy that smoothness condi-
tion; only for certain very special billiard shapes are all
solutions smooth in that sense. Those special shapes are
precisely those, such as the circular billiard, with only
type (a) motion. 

For any two billiard shapes with the same area, there
exist, to leading order, the same number of standing-wave
patterns. But many of those patterns are not smooth in the
EBK sense; their wavefronts bend and twist on the scale
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Figure 4. Wavefronts for the Einstein-Brillouin-Keller
solution to the circular billiard. The red and blue
curves give constant values of the action functions S1
and S2 described in the text. The rays are normal to the
wavefronts and travel in straight lines until they specu-
larly reflect from the boundary; at those points, and
also when they pass through the inner caustic, they
switch from one set of wavefronts to the other. A parti-
cle starting in the yellow neighborhood, normal to the
red wavefronts, will follow a ray trajectory in the bil-
liard, switching between red and blue wavefronts as
shown. When it returns to the yellow neighborhood,
its trajectory must be normal to one of the wavefronts.
That condition is met for motion on a circular bil-
liard—Einstein’s type (a) motion. In a stadium billiard,
however, particles execute Einstein’s type (b) motion
and the condition cannot be satisfied for the wave-
fronts generated by any finite set of actions.



of a wavelength. Those are the chaotic solutions and they
must be found numerically. Figure 5 shows an example of
such a solution. In fact, the numerical solutions essentially
come from superposing a number of smooth waves that grows
inversely with the wavelength. The results are “turbulent”
standing-wave patterns, such as the one shown in the figure.
The fraction of chaotic solutions is just the fraction of phase
space in which Einstein’s type (b) motion occurs.

Einstein’s insight redux
The 1917 paper of Einstein’s was cited during the 1920s
by such luminaries as de Broglie and Schrödinger. Indeed,
Schrödinger commented in his initial work on the wave
equation:3

The framing of the quantum conditions [in
Einstein’s 1917 paper] is the most akin, out of
all the earlier attempts, to the present one.

Many early quantum texts also cited Einstein’s 1917 work.
But nothing indicates that anyone understood the diffi-
culty Einstein had identified, that of quantizing chaos. The
paper then appears to have been forgotten for roughly 25
years, until Keller cited it in connection with his own in-
dependent derivation of the quantization rule. Keller re-
lates that he heard of the Einstein paper from Fritz 
Reiche at New York University. Reiche had previously suc-
ceeded Einstein as a professor at the University of Berlin.
Keller’s works in the late 1950s and early 1960s do not
mention the potential problem with type (b) motion and
give the impression that the method presented is of gen-
eral applicability, though in later publications Keller
makes the limitations of the method clear.5

Ian Percival reintroduced the physics community to
Einstein’s work in a 1973 paper emphasizing that a
generic system should have regular and irregular (chaotic)
levels.6 Percival coined the term Einstein-Brillouin-Keller

quantization for equation 7, the corrected form of Ein-
stein’s condition. By 1971, although he was unaware of
Einstein’s work, Gutzwiller had come to understand that
it is not possible to use a Bohr–Sommerfeld type of quan-
tization to deal with chaotic systems. He introduced an en-
tirely new semiclassical approach that abandoned the at-
tempt to find individual chaotic states. Instead, his
approach yielded an equation to calculate the density of
states of a chaotic system from knowledge of the unstable
periodic orbits of the system.7 Much beautiful work has
gone into refinements of Gutzwiller’s approach, which has
been successfully applied to systems in atomic and con-
densed matter physics.

Gutzwiller’s work showed that despite the absence of
a Bohr–Sommerfeld or EBK quantization scheme for
chaotic systems, strong classical–quantum correspon-
dences exist even in chaotic systems. Those correspon-
dences have inspired a new interdisciplinary field of quan-
tum physics, unhappily known as quantum chaos theory.
The name is unfortunate because linear quantum systems
don’t exhibit exponential sensitivity to initial conditions—
the hallmark of classical chaos. Nonetheless, the search
for semiclassical approximations and classical insights
into “chaotic” quantum systems is a lively and useful en-
deavor that has flourished now for over three decades.8

Although Einstein’s antipathy to certain aspects of
modern quantum theory is well known, there appears to
be a renewed appreciation this year of his seminal contri-
butions to quantum physics. With his introduction of the
photon concept in 1905, his clear identification of
wave–particle duality in 1909, his founding of the quan-
tum theory of radiation in 1917, and his treatment of the
Bose gas and its condensation in 1925, Einstein laid much
of the foundation of the theory. He commented to Otto
Stern, “I have thought a hundred times as much about the
quantum problems as I have about general relativity 
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Figure 5. Chaotic
wavefunction of the
stadium billiard. In
this plot of the
probability density,
red areas are re-
gions of high den-
sity and blue areas
are regions of low
density. The paucity
of regions of paral-
lel nodal lines indi-
cates that the
smooth wavefronts
required for the EBK
procedure to work
are lacking.



theory.”9 We should add to his list of illustrious achieve-
ments another advance, modest on the scale of his genius,
but brilliant by any other standard: the first identification
of the problem of quantizing chaotic motion. 

I gratefully acknowledge the assistance of Hakan Tureci and
Harald Schwefel for discussions of the EBK method and in
preparing the graphics for this article; I particularly thank
Harald for providing the component graphics for the cover
image. I also thank Martin Gutzwiller for sharing his many
insights into the history and physics discussed in this article
and Joseph Keller for recounting to me the history relating to
his rediscovery of the Einstein paper.

References
1. A translation of the paper appears in The Collected Papers of

Albert Einstein, vol. 6, A. Engel, trans., Princeton U. Press,
Princeton, NJ (1997), p. 434.

2. L. de Broglie, PhD thesis, reprinted in Ann. Found. Louis de
Broglie 17, 22 (1992).

3. E. Schrödinger, Ann. Phys. (Leipzig) 489, 79 (1926).
4. J. B. Keller, Ann. Phys. (NY) 4, 180 (1958). An initial version

of the paper was published by Keller as a research report in
1953. See also J. B. Keller, S. I. Rubinow, Ann. Phys. (NY) 9,
24 (1960).

5. J. B. Keller, SIAM Rev. 27, 485 (1985).
6. I. C. Percival, J. Phys. B 6, L229 (1973).
7. M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971); M. C.

Gutzwiller, Chaos in Classical and Quantum Mechanics,
Springer-Verlag, New York (1990). 

8. See the resource letter by M. C. Gutzwiller, Am. J. Phys. 66,
304 (1998). 

9. Quoted in A. Pais, “Subtle is the Lord”: The Science and the Life
of Albert Einstein, Oxford U. Press, New York (1982), p. 9. �

www.pt.ims.ca/6085-15 or Circle #15 www.pt.ims.ca/6085-16 or Circle #16




