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Let us begin by getting acquainted with an infinite-dimensional vector.
Consider a function defined in some interval, say, ¢ << x << b. A concrete
example is provided by the displacement f(x, ¢) of a string clamped at
x =0 and x = L (Fig. 1.6).

Suppose we want to communicate to a person on the moon the string’s
displacement f(x), at some time 7. One simple way is to divide the interval
0-L into 20 equal parts, measure the displacement f{x;) at the 19 points
x = L[20,2L/20, ..., 19L/20, and transmit the 19 values on the wireless.
Given these f(x;), our friend on the moon will be able to reconstruct the
approximate picture of the string shown in Fig. 1.7.

If we wish to be more accurate, we can specify the values of f(x) at a
larger number of points. Let us denote by f;,(x) the discrete approximation
to f(x) that coincides with it at » points and vanishes in between. Let us

now interpret the ordered n-tuple {f,(x),fn(x2), ..., /fr(x,)} as com-
ponents of a ket |f,> in a vector space V"(R):
Jn(x1)
Ja(x2)
e | (1.10.1)
Jn(%)
The basis vectors in this space are
~ 0
0
| x;»«>| 1 |« ith place (1.10.2)
0 .
.

corresponding to the discrete function which is unity at x = x; and zero

fix)

o L—x

Fig. 1.6. The string is clamped at x = 0 and x = L. It is free to oscillate in the plane
of the paper.
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Fig. 1.7. The string as recon-
structed by the person on the x=0.|

moon. X xz 9
elsewhere. The basis vectors satisfy
(x| x50 = 0y (orthogonality) (1.10.3)
[x>(x; | =1 (completeness) (1.10.4)
=]

Try to imagine a space containing n mutually perpendicular axes,
one for each point x;. Along each axis is a unit vector | x;>. The function
f.(x) is represented by a vector whose projection along the ith direction is

AEDE
> = ; Fux) | x> (1.10.5)

To every possible discrete approximation g,(x), 4,(x), etc., there is a cor-
responding ket |g,>, | A,>, etc., and vice versa. You should convince
yourself that if we define vector addition as the addition of the components,
and scalar multiplication as the multiplication of each component by the
scalar, then the set of all kets representing discrete functions that vanish
at x = 0, L and that are specified at » points in between, forms a vector
space.
We next define the inner product in this space:

Sula = ¥ Filsdealx) (1.106)

Two functions f;,(x) and g, (x) will be said to be orthogonal if {f; | g,> = 0.
Let us now forget the man on the moon and consider the maximal
specification of the string’s displacement, by giving its value at every point
in the interval O-L. In this case f_(x) = f(x) is specified by an ordered
infinity of numbers: an f(x) for each point x. Each function is now rep-
resented by a ket |f,> in an infinite-dimensional vector space and vice
versa. Vector addition and scalar multiplication are defined just as before.
Consider, however, the inner product. For finite n it was defined as

<fn Ign> = il fn(xi)g-n(xi)
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in particular

Sl > = 3 hGP

If we now let n go to infinity, so does the sum, for practically any function.
What we need is the redefinition of the inner product for finite # in such
a way that as » tends to infinity, a smooth limit obtains. The natural choice
is of course

7
Solgn> =) Hlxdga(x)4, A= Lin+1) (1.10.6")
=1
If we now let n go to infinity, we get, by the usual definition of the integral,

L
e = J F(x)g(x) dx (1.10.7)

SIf> = jb £2(x) dx (1.10.8)

If we wish to go beyond the instance of the string and consider complex
functions of x as well, in some interval @ << x << b, the only modification
we need is in the inner product:

b
ars :j F*(0g(x) dx (1.10.9)

What are the basis vectors in this space and how are they normalized?
We know that each point x gets a basis vector | x>. The orthogonality of
two different axes requires that

(x| x"y =0, x££ x (1.10.10)

What if x = x'? Should we require, as in the finite-dimensional case,
(x| x> = 17 The answer is no, and the best way to see it is to deduce the
correct normalization. We start with the natural generalization of the
completeness relation Eq. (1.10.4) to the case where the kets are labeled
by a continuous index x':

b
J- | x'D<{x" |dx' =1 (1.10.11)
a

where, as always, the identity is required to leave each ket unchanged.
Dotting both sides of Eq. (1.10.11) with some arbitrary ket |f> from
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the right and the basis bra (x | from the left,

b
J x| X |fydx = x| T|f) = (x| (1.10.12)

Now, {x |f, the projection of |/ along the basis ket | x>, is just f(x).
Likewise (x'|f» = f(x'). Let the inner product {x|x"> be some un-
known function é(x, x'). Since d(x, x") vanishes if x %= x' we can restrict
the integral to an infinitesimal region near x" = x in Eq. (1.10.2):

J“E 5, XV f() dx' = f(x) (1.10.13)

In this infinitesimal region, f(x') (for any reasonably smooth f) can be
approximated by its value at x' = x, and pulled out of the integral:

J(x) Jm d(x, x") dx' = f(x) (1.10.14)
so that
J " o(x, X)) dx = 1 (1.10.15)

Clearly 8(x, x') cannot be finite at x" = x, for then its integral over an
infinitesimal region would also be infinitesimal. In fact 4(x, x") should be
infinite in such a way that its integral is unity. Since d(x, x') depends only
on the difference x — x', let us write it as d(x — x'). The “function,”
8(x — x), with the properties

d(x — x) =0, x =X
b
Jé(x—x’)dx’:l, a<x<b

@

(1.10.16)

is called the Dirac delta function and fixes the normalization of the basis
vectors:
(x| x"y = d(x — x') (1.10.17)

It will be needed any time the basis kets are labeled by a continuous index
such as x. Note that it is defined only in the context of an integration:
the integral of the delta function d6(x — x') with any smooth function
f(x') is f(x). One sometimes calls the delta function the sampling function,
since it samples the value of the function f(x') at one pointt:

J (¢ — ) f() dx’ = f(x) (1.10.18)

t We will often omit the limits of integration if they are unimportant.
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(a) I..A,I (b)
\ dgalx-x"
galx-x") qndx X-€ )
x
M x' X t+e€

Fig. 1.8. (a) The Gaussian g4 approaches the delta function as A4 — 0. (b) Its derivative
(dg/dx)(x — x'") approaches §'(x — x') as A4 — 0.

The delta function does not look like any function we have seen before,
its values being either infinite or zero. It is therefore useful to view it as the
limit of a more conventional function. Consider a Gaussian

g (x — x') = Tm_lﬂ)ﬁ exp[— T (1.10.19)
as shown in Fig. 1.8a). The Gaussian is centered at x' = x, has width 4,
maximum height (74%)~¥2, and unit area, independent of A. As A ap-
proaches zero, g, becomes a better and better approximation to the delta
function.?

It is obvious from the Gaussian model that the delta function is even.
This may be verified as follows:

0x — x) =<{x | x) =& x)*F = 0(x — x)* = d(x — x)

since the delta function is real.
Consider next an object that is even more peculiar than the delta
function: its derivative with respect to the first argument x:

d

e o(x — x') (1.10.20)

(x—x") = Tdd;é(x —x')=—

What is the action of this function under the integral? The clue comes from
the Gaussian model. Consider dg,(x — x')/dx = —dg,(x — x")/dx’ as a
function of x'. As g, shrinks, each bump at +¢ will become, up to a scale

1 A fine point that will not concern you till Chapter 8: This formula for the delta function
is valid even if 4? is pure imaginary, say, equal to {§% First we see from Eq. (A.2.5)
that g has unit area. Consider next the integral of g times f(x') over a region in x’
that includes x. For the most part, we get zero because f is smooth and g is wildly
oscillating as § — 0. However, at x = x’, the derivative of the phase of g vanishes
and the oscillations are suspended. Pulling f(x’ = x) out of the integral, we get the
desired result.
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factor, the & function. The first one will sample —f(x — &) and the second
one +f(x + €), again up to a scale, so that

af

U
dx' |z

J 8 (x — XN f(x)dx oc flx + &) — flx —e)=2¢

The constant of proportionality happens to be 1/2¢ so that

-
dx’

J 8 (x — XVA(x') dx' = - df;;) (1.10.21)

z'=z
This result may be verified as follows:

J 8 (x — XV f(x) dx’ — J —d-a—(’;;—ﬁ Fx) dx’ = di;_[ 3(x — XV f(x') dx’

d
= Ef(x)

Note that &'(x — x') is an odd function. This should be clear from Fig.
1.8b or Eq. (1.10.20). An equivalent way to describe the action of the ¢’
function is by the equation

8(x — x') = 8(x — x') % (1.10.22)

where it is understood that both sides appear in an integral over X' and that
the differential operator acts on any function that accompanies the 0" function
in the integrand. In this notation we can describe the action of higher
derivatives of the delta function:

d"é(x — x')
dx™ B

o — )

1.10.23

We will now develop an alternate representation of the delta function.
We know from basic Fourier analysis that, given a function f(x), we may
define its transform

k) = W jiﬂ e~k f(x) dx (1.10.24)

and its inverse

fx) = W Jic ek f(k) dk (1.10.25)
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Feeding Eq. (1.10.24) into Eq. (1.10.25), we get

Sx) = J-:: (T’Z]?t_ Jﬁ; dkei“‘“'—z’)f(x) dx

Comparing this result with Eq. (1.10.18), we see that
1 - iklz'—z) L
- j,m dke — 6(x' — x) (1.10.26)

Exercise 1.10.1.* Show that d(ax) = 8(x)/|a|. [Consider [ é(ax) d(ax).
Remember that d(x) = 6(—x).]

Exercise 1.10.2.* Show that

d(x; — x)
) = 3~ g

where x; are the zeros of f(x). Hint: Where does 8(f(x)) blow up? Expand f(x)
near such points in a Taylor series, keeping the first nonzero term.

Exercise 1.10.3.* Consider the theta function 6(x — x') which vanishes if
x — x' is negative and equals 1 if x — x' is positive. Show that the theta function
is the integral of the delta function.

Operators in Infinite Dimensions

Having acquainted ourselves with the elements of this function space,
namely, the kets | /> and the basis vectors | x>, let us turn to the (linear)
operators that act on them. Consider the equation

Qf>=1f

Since the kets are in correspondence with the functions, {2 takes the function
f(x) into another, f(x). Now, one operator that does such a thing is the
familiar differential operator, which, acting on f(x), gives f(x) = df(x)/dx.
In the function space we can describe the action of this operator as

D|f> = |dfjdx)

where | dffdx) is the ket corresponding to the function dfjdx. What are the
matrix elements of D in the | x) basis? To find out, we dot both sides of
the above equation with | x),

af

x|D|fy = HE) _ 4

dx






