Testl for PHYS 2130 section 091

Date: $7^{\text {th }}$ Feb. 2007
Student First Name:
Student Last Name:
Student Rocket ID:

You may use the backside of all pages. No calculators are allowed.

Questions 1: The sentence below may be completed by either of five alternatives. Write the letter corresponding to the alternative which is impossible.
A body can have (a) velocity east and acceleration east. (b) velocity east and acceleration west. (c) zero instantaneous velocity and non-zero instantaneous acceleration. (d) constant acceleration and changing velocity. (e) constant velocity and variable acceleration. (1 point)

Question 2: A golfing team must play on a putting green with an alligator pit. Figure 1 shows an overhead view of one putting challenge of the team; an xy coordinate system is superimposed. Team members must putt from the origin to the hole, which is at xy coordinates ($8 \mathrm{~m}, 12 \mathrm{~m}$), but they can putt the golf ball using only one or more of the following displacements, one or more times sequentially:

$$
\overrightarrow{d_{1}}=(8 \mathrm{~m}) \hat{\mathrm{i}}+(6 \mathrm{~m}) \hat{\mathrm{j}}, \quad \overrightarrow{d_{2}}=(6 \mathrm{~m}) \hat{\mathrm{j}}, \quad \overrightarrow{d_{3}}=(8 \mathrm{~m}) \hat{\mathrm{i}}
$$

The pit is at coordinates $(8 \mathrm{~m}, 6 \mathrm{~m})$. If a team member putts the ball into or through the pit, the member is automatically disqualified. What sequence of displacements should a team member use to avoid the pit? Write your answer in the table below as a sequence of any combination of displacements using only one symbol $\overrightarrow{\mathrm{d}}_{1}, \overrightarrow{\mathrm{~d}}_{2}$, or $\overrightarrow{\mathrm{d}}_{3}$ in each cell of the table. You may leave extra cells blank. (1 point)

Fig. 1 Question 2.

Answer 2:

$1^{\text {st }}$ step	$2^{\text {nd }}$ step	$3^{\text {rd }}$ step	$4^{\text {th }}$ step	$5^{\text {th }}$ step	$6^{\text {th }}$ step	$7^{\text {th }}$ step	$8^{\text {th }}$ step	$9^{\text {th }}$ step	$10^{\text {th }}$ step

Question 3: Figure 2 shows an arrangement in which four disks are suspended at rest by massless cords. The longer, top cord loops over a frictionless pulley and is attached to a fixed wall. All four discs have the same mass. The tensions in the shorter cords are T_{1}, T_{2}, and T_{3} as shown. What is the ratio $\mathrm{T}_{2} / \mathrm{T}_{3}$? (1 point)

Fig. 2 Question 3

Question 4: A child is able to hold a toy car of mass m in contact with a vertical wall, at rest, by exerting a horizontal force of magnitude F on it. If the magnitude of the acceleration due to gravity is g , what is the minimum coefficient of static friction μ_{s} between the car and the wall? ($\mathbf{1}$ point)

Question 5: Figure 3 shows a conical pendulum, in which the bob (the small object at the lower end of the cord) moves in a horizontal circle at constant speed. (The cord sweeps out a cone as the bob rotates.) The bob has a mass m, the string has length L and negligible mass, and the bob follows a circular path of radius r. The magnitude of the acceleration due to gravity is g. What is the tension T in the string? Your answer can only involve the known quantities, $\mathrm{m}, \mathrm{L}, \mathrm{r}$, and g. ($\mathbf{2}$ points)

Fig. 3 Question 5

Question 6: A loaded penguin sled weighing W rests on a plane inclined at angle θ to the horizontal (Figure 4). Between the sled and the plane, the coefficient of kinetic friction is μ_{k}. Once upward motion has already begun what value of F is required to move the sled up the plane at constant velocity? Your answer can only involve the known quantities W, θ, and μ_{k}. (2 points)

Fig. 4 Question 6

Question 7: You throw a ball at a speed of v_{0} at an angle θ to the horizontal. Find the highest height h from its initial point of release, if the acceleration due to gravity is g. ($\mathbf{2}$ points)

