Chapter 19: The Kinetic Theory of Gases

Avogadro’s number

N, =6.02 x 10?3 /mole

Number of moles 1n a sample:

n=N/N, ;N =number of atoms or molecules

Universal Gas Constant
R =28.31 J/mol -K

Boltzmann constant

k=R/N, =1.38x 1072 J/K




Ideal Gases

At low gas densities, all gases can be treated as 1deal
gases. Ideal gases obey the relation:

pV =nRT (ideal gas law)

p; Vi — ps Vi — nR

IF n 1s constant, then
Ty

i

p: absolute (not gauge) pressure.

V: volume of the gas
n: number of moles of gas present.

T: the temperature in Kelvin. It *MUST* be 1n Kelvin!

R: gas constant (same for all gases) R =8.31 J/mol -K



Ideal Gases
|pV =nRT |

Three variables in the 1deal gas law (4 if you count n -- but
let n be constant for now).

Consider special cases

Pressure:

[sobaric -- constant pressure

Volume:

[sochoric (or 1sovolumic) -- constant volume

Temperature:

[sothermal -- constant temperature



Ideal Gases

|pV =nRT |

Three variables in the 1deal gas
law (with n being constant).

Pressure

Consider special cases

Pressure:

Isobaric -- constant pressure

pV = const

Volume

W =J;:fpdV :pj;:f dv =p(V, -V )=pav



Ideal Gases

|pV =nRT |

Three variables in the 1deal gas
law (with n being constant).

Pressure

Consider special cases

Volume:

Isochoric -- constant volume
Volume

W = v pdV = Vip dV =0 since the integral limts are equal
\ v,



Ideal Gases

|pV =nRT |

Three variables in the 1deal gas

L
law (with n being constant). 2
Consider special cases ;‘j) f
Temperature:
Isothermal -- constant temperature
Volume

Gas expands from V,; to Vi, p=nRT/V

W = j pdV jfﬁd\/

S =nRT[In V]y’ =nRT In—t

Vi 'V V.

1



Summary of Work W = J pdV

Work done at constant pressure

pi1s constant, W=p (V.- V,)=p AV

Work done at constant volume

dV=0, so W=0

Work done by 1deal gas at constant temperature

W = j pdV j fﬂd\/ =nRT fdvv—nRT[an]Vf—nRTln%

1



Molar specific heat of an ideal gas

Molar specific heat:
Q=cn(T,~T)

Pressure

The specific heat ¢ 1s a value
that depends on the ability of a
substance to absorb energy.

As such, ¢ depends on both the
type of material and whether
the process 1s a constant
volume process or a constant
pressure process.

Volume

1) Constant-volume process
2) Constant-pressure process

3) Arbitrary process



Molar specific heat of an ideal gas

Molar specific heat at constant volume: Cy,
Q =n C,, AT(constant V process)
since V = constant, W = 0,
thus AE. . =Q-W=nCyAT or E _ =nC,T

For 1deal gas, the change 1n
internal energy depends only
on the change 1n gas
temperature.

Pressure

Volume



Molar specific heat at constant pressure: C

Q=nCAT (constant Pressure process)
AF"in‘t - Q R Wa
since p = constant, W = pAV = nRAT

AE;,=n Cy AT =n C AT — nRAT =n(C, — R)AT

Therefore | Cy,=C,— R

or CP=CV_R




Degrees of Freedom

Particles can absorb energy depending on their structure.
A degree of freedom 1s the way the particle can move.

All particles can move in x-, y-, and z-directions.

> 3 degrees of freedom

diatomic molecules (N,, O,, etc.) have two rotational
axes.

. ‘ > 2 more degrees of freedom

polyatomic molecules (CH,, H,O, etc) have three rotational
axes.

> 3 more degrees of freedom




Degrees of Freedom

Particles can absorb energy depending on their structure.
A degree of freedom 1s the way the particle can move.

Molecule Translational Rotational Total Cy
monotomic 3 0 3 3/2

diatomic 3 2 5 0
polyatomic 3 6 6/2 =3

Each degree of freedom contributes 1/2 to the Cy,.

. 3 | 1 /2
monatomic AE. = 5nRAT ’ BENI i
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Degrees of Freedom

Particles can absorb energy depending on their structure.
A degree of freedom 1s the way the particle can move.

3 4

monotomic AE. ., = —nRAT LU e
5 : Us('ill|atinn
diatomic AE._ =—nRAT =« AT T
t 2 :(D / Rﬂtﬂ|ii0n
| W T O A A -
polyatomic AE;, =3nRAT 4 |
Translation
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20 50 100 200 500 1000 2000 5000 10,000
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Remember Quantum physics corrects
this for low temperatures!



Adiabatic expansion of an ideal gas.
For an adiabatic process, Q = 0.
pVY=a constant

V= Cp/ Cy treatyas a constant that
depends on the type of the gas molecules.

Free expansions
Q=W=0,
So AE, . =0,
Therefore T, = T, ;
or P.V.=PV, . Insulation

Vacuum i
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Isobaric --- constant pressure process
Q=nCAT, W=pAV
Isothermal --- constant temperature process

AE. . =0, Q=W=nRT In(V/V))

Int

Isochoric process --- constant volume process

Q=AE_ =nCyAT, W=0

Adiabatic expansion of an ideal gas

Q = Oa pVV = a constant AEint — Q - W

Free expansion for all processes.

Q=W=0 => AE,, =0, = T,=T; =>p,V,=p;V;



A Quiz

/ Can one mole of an ideal gas at a
temperature of 300K occupy a fixed

volume of 107%m?3 (ten liters) at one

atmosphere (1.01x10°N/m?) of pressure?

Remember: R =8.31 J/mol -K

1) yes.
2) No. The gas needs to be heated up to occupy that volume

with that pressure.

3) No. The gas needs to be cooled down to occupy that volume
with that pressure.

4) Depends on the type of 1deal gas molecules.



A Quiz

/ pV =nRT

pV = (1.01x10°N/m?)(107?m?)
= 1010 Nm =1,010J

nRT = (1.0mol)(8.31 J/mol - K)(300K)
= 2,493 ]
Can one mole of an ideal gas at a temperature of 300K occupy a

fixed volume of 107?m3 (ten liters) at one atmosphere
(1.01x10°N/m?) of pressure? Remember: R = 8.31 J/mol -K

1) yes.
2) No. The gas needs to be heated up to occupy that volume

It pressure.
% he gas needs to be cooled down to occupy that volume

4) Depends on the type of] = 1010J/(1.0)(8.31)=122K




The Microscopic World

What causes pressure?



Chapter 19: the Microscopic World

All macroscopic (1.e., human scale)
quantities must ultimately be explained on
the microscopic scale.



Pressure

Definition of pressure:

Force
- .-"—N . i.I
Pressure = R eyl
Area R
I
But now what 1s force? o

Relate force to impulse and
change 1n momentum.

F=— = dp=Fdt

Op, =p; —p, =(-mv,)—(mv,)=-2mv,



Take At to be the time that molecule takes in hitting
the wall, bouncing off and then hitting it again. It
will have traveled 2L 1n that time with speed v,.

2 y
Ap, _ 2mv, _ mv,
At 2L / VX L ”'J/ - /rl";h:nr{nalll tc:}"
" __:,".':—‘:7 shNactec wa
l.
Area of wall: L2 -
I

Thus the pressure will be:

F, _mv, /L+mv.,/L+...+mv., /L

X

2 L2

L
= (%j(vil + Viz +...+ ViN)

p:



Since there are N molecules in the box, N =nN,
and N 1s usually a *very™* big number, we can use
the average speed instead of the actual speeds.

. F, _ mv:, /L+mv.,/L+...+mv. /L
2

L [2
/ m\ 4
— 2 2 2
- F (VXI+VX2+“’+VXN) N
\ ) - ~Normal to
- shaded wall
(mY , n@— /
o ks B
L) -

The volume of the box is L3, s0 == °*

p="1m (v,




A\

rms

Since there are 3 dimensions, v,? + v,? + v,* = v* and

each dimension is the same, v,> = v 2 = v, > => v2 = 3v 2

=0, = 5 ) =T,

(Vz)avg 1s the average of the squared speed -- which
makes the speed the (square) root of the mean (average)
squared speed -- 1.e., root-mean-squared speed, v,,...

(Vz)avg ~ Vims

Rearrange p= mni, (vfms) = PV
3V nmN ,




gas temperature

mN , 1s the molar mass M of the gas and using the ideal
gas law pV =nRT :

- 3pV _ [3nRT _ /SRT
" \YnmN, nM M

Thus, the characteristic speed of the gas molecules 1s
related to the temperature of the gas!

Gas V. (IM/S)
Hydrogen 1920
Helium 1370

N, 517

escape speedg,., 1120



Maxwell-Boltzmann Distribution

Define a function P(v) whose area (integral) equals 1.

.20 PN .
£
T
:rl‘. ]
% Va;; Area = P(v) dv
—~ 1.0 3.0
- S =
= Vp g
Vin — 'fIE;
0 =20
0 2 400 600 B00 1000 1200 >
Speed (m/s) = _ |
(a) T=300K
1.0
0 \\x_
M 3/2 0 200 400 600 800 1000 1200
2 Speed (m/'s)
— 2 —Mv“/2RT '
P(v) =4m 5 v'e %

P(v) 1s the Maxwell-Boltzmann Probability function



Maxwell-Boltzmann Distribution

~ 20 N
E
E
:rl‘. _
% i va; Area = P(v) dv
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Maxwell-Boltzmann Distribution

4.0

Area = P(v) dv
3.0

v) (1074 s/m)
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Kinetic Energies

Average kinetic energy:

() 3RT = (1) 3RT _ 3RT :(EIEJT:%H
M/m 2N, \2AN,

Kinetic energy only depends on the gas’s temperature!
K,,=tmv. =3kT

1
avg 2 rms

The “3” comes from the three dimensions: X, y, and z!



Brownian Motion

But.... not all the molecules are going at that speed.
Some are going faster and some sloooower than v, ..

. . -1
A gas molecule interacting ° 10 "o
. . . - - F
with neighboring molecules a9 pac
o /
1s like you trying to get to the f}’gyﬁ"
concession stand during a e s
N, / N _‘_—""“-'-h-,___
rock concert! s /’ b o o
P x'-ﬂ ,_a-"'f#
s S
;’H___,,--“' xh

p.s.: Einstein, 1905 A



Mean Free path

Define the mean-free-path A as the distance between
collisions. 1

A= 2
A2 Td” N/V
Molecular sizes o
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