
Chapter 19:   The Kinetic Theory of Gases

Avogadro’s number

NA = 6.02 x 1023 /mole

Number of moles in a sample:

n = N/NA ; N = number of atoms or molecules

Universal Gas Constant
R = 8.31 J/mol . K

Boltzmann constant

k = R/NA = 1.38 x 10−23 J/K



Ideal Gases
At low gas densities, all gases can be treated as ideal 
gases. Ideal gases obey the relation:

p:  absolute (not gauge) pressure. 

V:  volume of the gas

n:  number of moles of gas present. 

T:  the temperature in Kelvin.  It *MUST* be in Kelvin!

R:  gas constant (same for all gases)  R = 8.31 J/mol . K
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pV = nRT (ideal gas law)



Ideal Gases
pV = nRT

Three variables in the ideal gas law (4 if you count n -- but 
let n be constant for now).  

Pressure:

Volume:

Temperature:

Consider special cases

Isobaric -- constant pressure

Isochoric (or isovolumic) -- constant volume

Isothermal -- constant temperature



Ideal Gases
pV = nRT

Three variables in the ideal gas 
law (with n being constant).  

Pressure:

Consider special cases

Isobaric -- constant pressure
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Ideal Gases
pV = nRT

Three variables in the ideal gas 
law (with n being constant).  

Volume:

Consider special cases

Isochoric -- constant volume
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Ideal Gases
pV = nRT

Three variables in the ideal gas 
law (with n being constant).  

Temperature:

Consider special cases

Isothermal -- constant temperature
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Gas expands from Vi to Vf, p = nRT/V
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Work done by ideal gas at constant temperature

Work done at constant volume

dV = 0,   so  W = 0

Work done at constant pressure

p is constant,   W = p (Vf – Vi) = p ∆V

Summary of Work ∫= pdVW



Molar specific heat of an ideal gas
Molar specific heat:

Q = c n ( Tf – Ti )

1) Constant-volume process

2) Constant-pressure process

3) Arbitrary process

The specific heat c is a value 
that depends on the ability of a 
substance to absorb energy.  
As such, c depends on both the 
type of material and whether 
the process is a constant 
volume process or a constant 
pressure process.



Molar specific heat of an ideal gas
Molar specific heat at constant volume: CV 
Q = n CV ∆T(constant V process) 
since V = constant, W = 0, 

thus ∆Eint = Q – W = n CV ∆T    or   Eint = n CV T

For ideal gas, the change in 
internal energy depends only 
on the change in gas 
temperature.



Molar specific heat at constant pressure: Cp

Q = n Cp∆T (constant Pressure  process)

∆Eint = Q – W,   

since p = constant, W = p∆V = nR∆T

∆Eint = n CV ∆T = n Cp∆T – nR∆T = n(Cp – R)∆T

Therefore CV = Cp – R

or CP = CV – R



Degrees of Freedom
Particles can absorb energy depending on their structure. 
A degree of freedom is the way the particle can move.

All particles can move in x-, y-, and z-directions.

diatomic molecules (N2, O2, etc.) have two rotational 
axes.

3 degrees of freedom

2 more degrees of freedom

polyatomic molecules (CH4, H2O, etc) have three rotational 
axes.

3 more degrees of freedom



Degrees of Freedom
Particles can absorb energy depending on their structure. 
A degree of freedom is the way the particle can move.

Each degree of freedom contributes 1/2 to the CV.

Molecule Translational    Rotational    Total
monotomic 3 0 3
diatomic 3 2 5
polyatomic 3 3 6
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TnR3Eint ∆=∆polyatomic

CV
3/2
5/2
6/2 = 3



Degrees of Freedom
Particles can absorb energy depending on their structure. 
A degree of freedom is the way the particle can move.

TnR
2
3Eint ∆=∆monotomic

TnR
2
5Eint ∆=∆diatomic

TnR3Eint ∆=∆polyatomic

Remember Quantum physics corrects 
this for low temperatures!



Adiabatic expansion of an ideal gas. 

For an adiabatic process, Q = 0. 

pVγ = a constant

γ = Cp/CV   treat γ as a constant that 
depends on the type of the gas molecules.

Free expansions

Q = W = 0,

So ∆Eint = 0, 

Therefore Ti = Tf

or   PiVi = PfVf



Isobaric --- constant pressure process

Q = n Cp∆T,      W = p ∆V
Isothermal --- constant temperature process

∆Eint = 0,       Q = W = nRT ln(Vf/Vi)

Isochoric process --- constant volume process

Q = ∆Eint = n CV ∆T,       W = 0

∆Eint = Q − W 

for all processes.

Adiabatic expansion of an ideal gas

Q = 0,   pVγ = a constant
Free expansion

Q = W = 0  =>  ∆Eint = 0,  => Ti = Tf => piVi = pfVf



A Quiz
Can one mole of an ideal gas at a 
temperature of 300K occupy a fixed 
volume of 10−2m3 (ten liters) at one 
atmosphere (1.01x105N/m2) of pressure?  
Remember: R = 8.31 J/mol . K

1)  yes.
2)  No.  The gas needs to be heated up to occupy that volume 
with that pressure.
3)  No.  The gas needs to be cooled down to occupy that volume 
with that pressure.
4)  Depends on the type of ideal gas molecules.



A Quiz

1)  yes.
2)  No.  The gas needs to be heated up to occupy that volume 
with that pressure.
3)  No.  The gas needs to be cooled down to occupy that volume 
with that pressure.
4)  Depends on the type of ideal gas molecules.

pV = nRT
pV = (1.01x105N/m2)(10−2m3)

=  1010 Nm = 1,010 J

nRT = (1.0mol)(8.31 J/mol . K)(300K)
=  2,493 J

T= pV/ nR
= 1010J/(1.0)(8.31) = 122 K

Can one mole of an ideal gas at a temperature of 300K occupy a 
fixed volume of 10−2m3 (ten liters) at one atmosphere 
(1.01x105N/m2) of pressure?  Remember: R = 8.31 J/mol . K



The Microscopic World

What causes pressure?



Chapter 19: the Microscopic World

All macroscopic (i.e., human scale) 
quantities must ultimately be explained on 
the microscopic scale.



Pressure
Definition of pressure:

Pressure = Force
Area

But now what is force?

Relate force to impulse and 
change in momentum.
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Take ∆t to be the time that molecule takes in hitting 
the wall, bouncing off and then hitting it again.  It 
will have traveled 2L in that time with speed vx.

Area of wall:  L2

Thus the pressure will be:
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Since there are N molecules in the box,  N = nNA
and N is usually a *very* big number, we can use 
the average speed instead of the actual speeds.
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The volume of the box is L3, so
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vrms

(v2)avg is the average of the squared speed -- which 
makes the speed the (square) root of the mean (average) 
squared speed -- i.e., root-mean-squared speed, vrms.
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(v2)avg =  vrms

Since there are 3 dimensions, vx
2 + vy

2 + vz
2 = v2 and 

each dimension is the same, vx
2 = vy

2 = vz
2 => v2 = 3vx
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gas temperature
mNA is the molar mass M of the gas and using the ideal 
gas law pV = nRT : 

M
RT3

Mn
nRT3

mNn
pV3v

A
rms ===

Thus, the characteristic speed of the gas molecules is 
related to the temperature of the gas!

Gas vrms (m/s)
Hydrogen 1920
Helium 1370
N2 517
escape speedEarth 1120



Maxwell-Boltzmann Distribution
Define a function P(v) whose area (integral) equals 1.
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P(v) is the Maxwell-Boltzmann Probability function



Maxwell-Boltzmann Distribution
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Maxwell-Boltzmann Distribution
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Kinetic Energies

Average kinetic energy:

( )
( ) ( ) kTT

N
R

2
3

N2
RT3

m/M
RT3

M
RT3m

mvvmK

2
3

AA
2
1

2
1

2
rms2

1
avg

2
2
1

avg

=













====

==

kTvmK 2
32

rms2
1

avg ==

Kinetic energy only depends on the gas’s temperature!

The “3” comes from the three dimensions:  x, y, and z!



Brownian Motion

But.... not all the molecules are going at that speed.  
Some are going faster and some sloooower than vrms.

A gas molecule interacting 
with neighboring molecules 
is like you trying to get to the 
concession stand during a 
rock concert!

p.s.: Einstein, 1905



Mean Free path
Define the mean-free-path λ as the distance between 
collisions.

Molecular sizes
V/Nd2

1
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