Chapter 09

Center of Mass and Linear Momentum

* Center of mass: The center of mass of a body or a
system of bodies 1s the point that moves as if all of the
mass are concentrated there and all external forces are
applied there.

 Note that HRW uses “com” but I will use “c.m.”
because “c.m.” 1s more standard notation for the

“center of mass”.
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(a) (b)



System of Particles

Consider two masses m; at x = x; and m, at X,.

(a)

X

c.m.

_ M X, +m,X,

(b)

m, +m,

mo

X9






* Center of mass for a system of »n particles:

* M is just the total mass _
of the system M= Z m;

A

* USing vectors, we have: Iem — Xc.m.i * YC.m.j + Zc.m.k

e Therefore: f .:iZm.f




* For a solid body, we can treat 1t as a continuous
distribution of matter dm

X, :ﬁ_‘-x dm  Yen :$Iydm Z, . :ﬁj‘zdm

* If the object has uniform density,
dm = (M/V)dV

Xom =%I><d\’ Yem =%jde z. :%Izd\/

 If an object has a point, a line or a plane of
symmetry, the center of mass of such an object then
lies at that point, on that line or in that plane.



« Sample 9-2: the figure shows a
uniform metal plate P of radius 2R

from which a disk of radius R has
been stamped out (removed). Using
the x-y coordinate system shown,
locate the center of mass of the
plate.

Notice that the object 1s symmetric
about the x-axis, soy. ., =0. We just
need to calculate x. ., = 0.




Technique: Use symmetry as
much as possible.

The center of mass of the large
disk must be at the center of the
disk by symmetry. The same
holds true for the small disk. \
The hole 1s as if the smaller disk S
had “negative” mass to
counteract the solid larger mass

disk.




Superimpose the two disks. The
overlap of the “positive” mass
with the “negative” mass will
result mathematically 1n a hole.

The center of mass will be
somewhere over here.

center of mass (c.m. or com) of Plate C: x-=0
center of mass (c.m. or com) of Disk S: xg =-R

_chc'l'msXs:O"'ms(_R):( — g jR
L S

Rem. = m,. +m m,. +m +m
C S C S C




Superimpose the two disks. The
overlap of the “positive” mass
with the “negative” mass will
result mathematically 1n a hole.

Now we need m and mq. Both
disks have the same uniform mass
density p (but with different
“signs”). Thus,

m. =p Ve =p(m2R)?)= pl4rR?)
Likewise,

mj =pgVs = -p(R)*) = -p(rR?)



Superimpose the two disks. The
overlap of the “positive” mass
with the “negative” mass will
result mathematically 1n a hole.

m. =pVe =p(m2R )= pl4rR?)
mj =pgVs = -p(R)*) = -p(rR?)

:( ~p(TR*) jR:
P(4TR) ~ p(TIR )



* Newton’s 2nd law for a system of particles

We know n
B, = > mi “
.. =— ) m.rt T = p
¢ M — i M Lom — igl m;

take derivative with respect to time
Mv, =myv, +m,v,+...+m v_

take derivative with respect to time again



Newton’s second law for a system of particles
F = M ac.m.,x F = M ac.m.,y F = M ac.m.,z

net,x net,y net,z

—_—

— Fnet - M ac.m.

F_ .. 1s the net force of all external forces that act on
the system.
M 1s the total mass of the system.

a. . 18 the acceleration of the center of the mass




Linear Momentum

* The linear momentum of a particle 1s a vector

defined as L
p=mv

e Newton’s second law 1n terms of momentum

dp d —(mv) = mﬂ+ffd

dt  dt dt

g3l

t = ma = net
Most of the time the mass
— doesn’t change, so this term

= 1s zero. Exceptions are
T dt rockets (Monday)



The figure gives the linear momentum versus time for a

particle moving along an axis. A force directed along the
axi1s acts on the particle.

(a) Rank the four regions indicated according to the
magnitude of the force, greatest first

p

(b) In which region 1s the particle slowing?



* Linear momentum of a system of particles
R n n
P:Zpizzmivi:MVc.m.

1=1 1=1

P=Mv

Cc.m.

« Newton’s 2™ Jaw for a system of particles

d_P = M dVC-m- = Mac m = 1?:net
dt dt .

B, P
Fnet = d_
dt




Daily Quiz, February 16, 2005

A helium atom and a hydrogen atom can bind to form the
metastable molecule HeH (lifetime of about 1s). Consider one
such molecule at rest in the lab frame at the origin. This molecule
then dissociates with the hydrogen atom having momentum m_v
along the +x axis. What happens to the helium atom?



Daily Quiz, February 16, 2005

o —

A helium atom and a hydrogen atom can bind to form the
metastable molecule HeH (lifetime of about 1s). Consider one
such molecule at rest in the lab frame at the origin. This molecule
then dissociates with the hydrogen atom having momentum m_v
along the +x axis. What happens to the helium atom?




Daily Quiz, February 16, 2005

o —

A helium atom and a hydrogen atom can bind to form the
metastable molecule HeH (lifetime of about 1s). Consider one
such molecule at rest in the lab frame at the origin. This molecule
then dissociates with the hydrogen atom having momentum m_v

along the +x axis. What happens to the helium (my, = 4m,)
atom?

1) stays at x=0 2) goes along +x at speed v
3) goes along —x at speed v 4) goes along —x at speed v/4

5) none of the above



Daily Quiz, February 16, 2005

o —

A helium atom and a hydrogen atom can bind to form the
metastable molecule HeH (lifetime of about 1s). Consider one
such molecule at rest in the lab frame at the origin. This molecule
then dissociates with the hydrogen atom having momentum m_v

along the +x axis. What happens to the helium (my, = 4m,)
atom?

DPinitial = 0 means pg . =0

MV + MV = 0 = 4) goes along —x at speed v/4
m,v + 4mvae = () > Vo= —my a



Collisions take time!

Even something that
seems Instantaneous to us
takes a finite amount of
time to happen.

The collision of a ball with a bat
collapses part of the ball.



Impulse and Change in Momentum

= dp=Fdt = ﬁf—ﬁi:Aﬁszth

t;

Fnet - @
dt

Call this change in momentum the “Impulse” and
give 1t the symbol J.

b, —p, =Ap=T = Fdt

t;



Actual force function
versus time.

Average force versus B
collision time.

(#)



Impulse and Change in Momentum

Call this change 1n momentum the “Impulse” and
give 1t the symbol J.

— tp —
P, —p; =Ap=7J = Fdt

The 1nstantaneous force 1s hard (or very difficult) to

know 1n a real collision, but we can use the average

force F,,. Thus,

J=F, At



Daily Quiz, February 18, 2005

I_Q —

Foam Table

An egg was dropped on the table broke, but the egg
dropped on the foam pad didn’t break. Why didn’t this
egg break?



Daily Quiz, February 18, 2005

I_Q —

An egg was dropped on the table broke, but the egg dropped on
the foam pad didn’t break. Why didn’t this egg break?

1) Foam egg’s speed was less.

2) Foam egg’s change in momentum was less.

3) Foam egg’s collision time was greater.

4) What do you mean, it did break! 0) none of the above



Daily Quiz, February 18, 2005

I_Q —

An egg was dropped on the table broke, but the egg dropped on
the foam pad didn’t break. Why didn’t this egg break?

The eggs were dropped from same height, so their
speeds were the same. mgh = 1/2mv?



Daily Quiz, February 18, 2005

I_Q —

An egg was dropped on the table broke, but the egg dropped on
the foam pad didn’t break. Why didn’t this egg break?

The table egg’s momentum stopped at the table, but the
foam egg bounced up making its change in momentum
greater than the table egg!



Daily Quiz, February 18, 2005

I_Q —

An egg was dropped on the table broke, but the egg dropped on
the foam pad didn’t hreak Why didn’t this egg break?

QFoam egg’s collision time was greatD

Since J consfant, it AT1S large then F, , will be small.
J =F, At




Conservation of Linear Momentum

* For a system of particles, if it 1s both 1solated (the
net external force acting on the system is zero) and
closed ( no particles leave or enter the system )....

If SF=0 then (Cil_f):o
t

—

Therefore P =constant or Pi=Ps

then the total linear momentum of the system
cannot change.

Law of conservation of linear momentum



* Conservation of linear momentum along a specific
direction:

It 2F. =0 Then P;, =P,

It 2F,=0 Then P, =P,

y

If the component of the net external force on a
closed system 1s zero along an axis, then the
component of the linear momentum of the system
along that axis cannot change.



Linear Momentum

* The linear momentum of a particle 1s a vector

defined as L
p=mv

e Newton’s second law 1n terms of momentum

dp d —(mv) = mﬂ+ffd

dt  dt dt

g3l

t = ma = net
Most of the time the mass
— doesn’t change, so this term

= 1s zero. Exceptions are
ne
dt rockets (Tuesday)



Conservation of Linear Momentum

* For a system of particles, if it 1s both 1solated (the
net external force acting on the system is zero) and
closed ( no particles leave or enter the system )....

If SF=0 then (Cil_f):o
t

—

Therefore P =constant or Pi=Ps

then the total linear momentum of the system
cannot change.

Law of conservation of linear momentum



* Conservation of linear momentum along a specific
direction:

It 2F. =0 Then P;, =P,

It 2F,=0 Then P, =P,

y

If the component of the net external force on a
closed system 1s zero along an axis, then the
component of the linear momentum of the system
along that axis cannot change.



Collisions
In absence of external forces,

Linear momentum is conserved.

Mechanical energy may or may not be conserved.

Elastic collisions: Mechanical energy is conserved.

Inelastic collisions: Mechanical energy 1s NOT conserved.

But, Linear momentum is always conserved.



Conservation of Linear Momentum

Body 1 Body 2
3 s
. v b

Y !

Before

m 1 iy

After

[
=
<
+
=
(\®)
<
(\}



Center of Mass motion is constant

—=
1»‘-“ 1»2.52':-]
L — P -3
"y It

AN,

L




Center of Mass Motion

Body 1 Body 2
- >
Before _[; —>
(] X
" Mg
Vi Vy
After —_— —
] X
,l”_l ”i’i'
=Dn..+p.. = Y, = ( + )V
p11 p21 MVc.m. ml m2 Vc.m.
: Vem., —



Inelastic Collisions

Vi
Be lore — 1_'1” =)

Iy Mg
Projectile  Target

v
After —

m ] a Hi:‘.

Perfectly inelastic collision: The two masses stick together
m,v,; +m,Vv, = m1V1f+m2V2f:(m1+m2)Vf

0

— m
1 —_
Vf

[
<
~
[
<!
(@]
=
~



Inelastic Collisions

Vi
Be lore —i> 1_; =1{)

Iy Mg
Projectile  Target

v
After —
X

m ] a Hi:‘.

Was the mechanical energy:
conserved (E. = Ey);
lost (E; > Ey); or
gained (E. <Ey);

in the collision?



Inelastic Collisions

Vi
Be lore —i> 1_; =1{)

Iy Mg
Projectile  Target

After —

m ] a Hi:‘.

How much mechanical energy was lost in the collision?

2 2
;_(ml"'mz)\?fz:;_(ml"'mz)[mml j Vfi:L( - ]Vfi —
2

1 1 2 1
E s :Ei_Ef:_mIVIZi__ —! V12i:_ — 1 Vlzi
2 2\m, +m, 2\m, +m,




Elastic Collisions

Body 1 Body 2
I‘,] i 1_l"_3.l
Before s —>
i ""H rz:
After —_— %

Perfectly elastic collision: Mechanical energy 1s conserved

m,v,+m,v, = m;V;;+tm,V,, (: MVC.m.)

1 B 1 B 1 _
E; :_m1V121+_m2V§i = _mlvlzf +
2 2 2

1
_;2 —
—m,V,, = E,



Elastic Collisions

Body 1 Body 2
—*

%
; 1¢
Before —— —

After — —_—

Perfectly elastic collision: Mechanical energy 1s conserved

mv,+m,v, = m\V,+m,v,, (_MVc.m.)
_ m,-—m, _ 2m, _
Vig = \ATERS Vi
+ m m, + m
m, 2 1 2
_ _ 2m, _ m, —m, _
Vor  — \ATERI Vi

m, +m, m, +m,



What about two (or more) dimensions?

Simply break the momenta and velocities into
their x-, y-, and z-components.



e Inelastic collisions 1in two dimensions

n b
Pi_Pf ?V
Pix:Pfx Piy:Pfy /{

For the case shown here:

mv,; =my,,cost, +m,v, cosb,

0=mpy,, sin6 +m,v, sinb,



Conservation of Linear Momentum

* For a system of particles, if it 1s both 1solated (the
net external force acting on the system is zero) and
closed ( no particles leave or enter the system )....

If SF=0 then (Cil_f):o
t

—

Therefore P =constant or Pi=Ps

then the total linear momentum of the system
cannot change.

Law of conservation of linear momentum



Linear Momentum is conserved
P. =P

1

Let the mass M change (M + dM), which 1n turn makes the
velocity change. Rocket exhausts —dM in time dt at a
velocity U relative to our inertial reference frame.

Mv=-dMU + M+dM)(v+dv)

[Velocity of rocket '\ (Velocity of rocket . (Velocity of exhaust j

relative to ref. frame

relative to exhaust relative to ref. frame

(v+dv)=v_, + U

U |
4§—>‘ = —
\ v+dv

rel



Linear Momentum is conserved
P. =P

U — (V + dV) o Vrel
\ Substitute and divide by dt
Mv=-dMU + M+dM)(v+dv)

dM
_—Vrel :Mg
dt dt
U
«———| > w»nC —_—

\Y v +dv

rel



Linear Momentum is conserved
P. =P
— (V + dV) — Vrel
Substitute and divide by dt
Mv=-dMU + M+dM)(v+dv)

dM Ve f M
dV = __Vrel — j dV = _Vrel IM d_
M Vi Mi M
=>| v,—v.=v_In
Mf

\Y v +dv

rel



Problem 09-05

Find the center of mass of the ammonia molecule.

,
I
@ N

e
H u{ | ]:l,.

— - X
[ % H
W N,
H

Mass ratio: N/H=13.9
H to triangle center: d = 9.40x10-!!m
N to hydrogen: L = 10.14x10-"'m



Problem 09-05

Find the center of mass of the
ammonia molecule.

i J;V
N

H

5. (a) By symmetry the center of mass is located on the axis of symmetry of the

molecule — the y axis. Therefore x.om = 0.



Problem 09-05 A

/1
| L.
Find the center of mass of the H Zﬁ i
. | ~H
ammonia molecule. \vr/k\.r

5. (a) By symmetry the center of mass is located on the axis of symmetry of the
molecule — the y axis. Therefore x.om = 0.

(b) To find ycom, We note that 3myycom = mMN(YN — Yeom), Where yn is the distance from the
nitrogen atom to the plane containing the three hydrogen atoms:

y =4J(10.14x107" m)’ ~(9.4x10"" m)’ =3.803x10"" m

Thus,

14.0067)(3.803%10"" m
Yoy = —N2N =( I )=3.13><10‘“m
my +3m,, 14.0067+3(1.00797)

where Appendix F has been used to find the masses.



Problem 09-54

Find the distance the spring 1s
compressed. m;=2.0kg, m,=1.0kg.

Y-




Problem 09-54

Find the distance the spring 1s "
compressed. m;=2.0kg, m,=1.0kg. - FW

54. We think of this as having two parts: the first is the collision itself — where the blocks
“join” so quickly that the 1.0-kg block has not had time to move through any distance
yet — and then the subsequent motion of the 3.0 kg system as it compresses the spring to
the maximum amount x,. The first part involves momentum conservation (with +x
rightward):

mvi = (mi+ma)y = (2.0 kg)(4.0 m/s) = (3.0 kg)v

which yields v =2.7m/s. The second part involves mechanical energy conservation:
1 2 1 2
5(3.0 kg) (2.7 m/s) = (200 N/m)x

which gives the result x,, = 0.33 m.



Problem (09-56

Find the final velocity of A and 1s the collision
elastic?

Mass A: m,=1.6kg, v,=5.5 m/s
Mass B: mg=2.4kg, v5.=2.5 m/s, vg=4.9 m/s




Problem 09-56 —

Find the final velocity of A and 1s the collision
elastic? =t ___
Mass A: m,=1.6kg, v,=5.5 m/s

Mass B: mg=2.4kg, v5.=2.5 m/s, vg=4.9 m/s

56. (a) Let ma be the mass of the block on the left, v4; be its initial velocity, and var be its
final velocity. Let mg be the mass of the block on the right, vg; be its initial velocity, and
ver be its final velocity. The momentum of the two-block system is conserved, so

MAVA; + MBVB; = MaAVAf + MBVBy

and

- MV, T MgV, —NMgVy, _ (1.6)(5.5)+(2.4)(2.5)—(2.4)(4.9)

‘ =1.9 m/s.
| m, 1.6

(b) The block continues going to the right after the collision.



Problem 09-56 —

Find the final velocity of A and 1s the collision
elastic? =t ___
Mass A: m,=1.6kg, v,=5.5 m/s

Mass B: mg=2.4kg, v5.=2.5 m/s, vg=4.9 m/s

(¢) To see if the collision is elastic, we compare the total kinetic energy before the
collision with the total kinetic energy after the collision. The total kinetic energy before is

K. :%mAvii +%m3v§i :%(1 .6)(5.5)* +%(2.4)(2.5)2 =31.7J.

{

The total kinetic energy after is

I T TR > ] >
Ky =—mi, +—myvy =—(1.6)(1.9) +—(2.4)(4.9)" =31.7 J.

Since K; = K the collision 1s found to be elastic.



Problem 09-60

Find the final speeds of the ball and block. ..\
Mass 1 (ball): m;=0.5kg, h=0.70m s (,
Mass 2 (block): m,=2.5kg, v,=0.0 m/s —




Problem 09-60

Find the final speeds of the ball and block. ..\
Mass 1 (ball): m;=0.5kg, h=0.70m s (,
Mass 2 (block): m,=2.5kg, v,.=0.0 m/s '

60. First, we find the speed v of the ball of mass m; right before the collision (just as it
reaches its lowest point of swing). Mechanical energy conservation (with 2 = 0.700 m)
leads to

|
m]gh=5m1v2 = v=4/2gh =3.7 m/s.

(a) We now treat the elastic collision (with SI units) using Eq. 9-67:

m, —m, 053—25
Vlf — N —
Tom+m, 05423

(37)=-2417

which means the final speed of the ball is 2.47 m/s.

(b) Finally, we use Eq. 9-68 to find the final speed of the block:

2 2(0.
by 2, 209

= = (3.7)=123 m/s.
Com+m, 05+2.5



Pl’Oblem 09-63 /3 Baschall
Find the mass m to stop M and the final height of m. %\ 5
Mass 1 (baseball): m=?, h. .. =1.8m e >//<

Mass 2 (basketball): M=0.63kg, v,;~0.0 m/s

(et) Before (I Atfter

Elastic collisions: Mechanical energy 1s conserved.

1
Basketball: MthEMV2 = v =4,/2gh

rebounds upward with same speed -- only reversed direction



Problem 09-63

Find the mass m to stop M and the final height of m. %\

Mass 1 (baseball): m=?, h. .., =1.8m e )/%
Mass 2 (basketball): M 0.63kg, v,,~0.0 m/s

(et) Before (I Atfter

1
Baseball: mgh :Esz = VvV =4/2gh
M-m 2m M-m 2m
Ve = V. T V. . = A/ 2¢h — A/ 2¢h
Mf M+m Mi M+In mi M+m g M+m g
M -3m 2eh = 0
M+m



Problem (09-63

Find the mass m to stop M and final height of m. % 5
Mass 1 (ball): m,=0.5kg, h=0.70m >/
Mass 2 (block): m,=2.5kg, v,.=0.0 m/s

(er) Betore (hy After

(b) We use the same equation to find the velocity of the ball of mass m after the collision:

vmf:_m_M‘VQ'gh_'_ 2M 1/2gh=3M_m1/2gh

M +m M+m M +m

which becomes (upon substituting M = 3m) v, . =2,/2gh . We next use conservation of

mf
mechanical energy to find the height 4’ to which the ball rises. The initial kinetic energy

1s %mvif , the initial potential energy is zero, the final kinetic energy is zero, and the final

potential energy is mgh'. Thus

2

_ h\ " vmf _
=mgh'= h'= 5 =4h.
8

1
—my>
2

mf

With A =1.8 m, we have i’ =7.2 m.



Problem 09-97

Find the final speeds of the sleds.
Mass 1(sleds): M=22.7kg,
Mass 2 (cat): m=3.63kg, v.=3.05 m/s

—r—r—r—r =T

e ;’F




Problem 09-97 —E

97. Let M = 22.7 kg and m = 3.63 be the mass of the sled and the cat, respectively. Using
the principle of momentum conservation, the speed of the first sled after the cat’s first

jump with a speed of v. =3.05 m/sis

W, = % =0.488 m/s .

On the other hand, as the cat lands on the second sled, it sticks to it and the system (sled
plus cat) moves forward with a speed

o =— _0.4205 m/s.

>
T M+m

When the cat makes the second jump back to the first sled with a speed vi, momentum
conservation implies

My, , =mv,+(M +m)v,, =mv,+my, =2my,

which yields

Vypp = 2% =0.975 m/s.



Problem 09-97 —E _

= Spe—p————

After the cat lands on the first sled, the entire system (cat and the sled) again moves
together. By momentum conservation, we have

(M +m)v,, =mv, + Mv,, =mv, +my, =2mv,

or

2mvt.
Vl o =

g = =0.841 m/s.
| M +m

(a) From the above, we conclude that the first sled moves with a speed v, , =0.841 m/sa

after the cat’s two jumps.

(b) Similarly, the speed of the second sled is v, ., =0.975 m/s.



[ gy

Problem 09-130 — x
3

Ball 1 v,=10.0m/s at contact point of balls 2 and 3. All three
balls have mass m. Find the final velocities of all three balls.

130. The diagram below shows the situation as the incident ball (the left-most ball)
makes contact with the other two.




[ gy

Problem 09-130 — x
3

Ball 1 v,=10.0m/s at contact point of balls 2 and 3. All three
balls have mass m. Find the final velocities of all three balls.

130. The diagram below shows the situation as the incident ball (the left-most ball)
makes contact with the other two.

balll balls2 & 3
P.=mV + 2mv cos0

P.=mv

1 Q)

0 = 300 since all three balls are identical



[ gy

Problem 09-130 — x
3

Ball 1 v,=10.0m/s at contact point of balls 2 and 3. All three
balls have mass m. Find the final velocities of all three balls.

mv, =mV +2myvcosé

and since the total kinetic energy is conserved,
1 1 1
—my, =—mV "’ +2 [—mvzj.
2 2 2

We know the directions in which the target balls leave the collision so we first eliminate
V and solve for v. The momentum equation gives V = vy — 2v cos 6, so

V? =y, —4v,v cos@+4v’cos’ @



[ gy

Problem 09-130 — x
3

Ball 1 v,=10.0m/s at contact point of balls 2 and 3. All three
balls have mass m. Find the final velocities of all three balls.

and the energy equation becomes v, = v, —4v,vcos @ +4v° cos” @ +2v>. Therefore,

_ 2y,cos@  2(10 m/s)cos30°
1+2cos’@  1+2cos” 30°

=693 m/s.

(a) The discussion and computation above determines the final speed of ball 2 (as labeled
in Fig. 9-83) to be 6.9 m/s.

(b) The direction of ball 2 is at 30° counterclockwise from the +x axis.



[ gy

Problem 09-130 g "o,

3
Ball 1 v,=10.0m/s at contact point of balls 2 and 3. All three
balls have mass m. Find the final velocities of all three balls.

(¢) Similarly, the final speed of ball 3 1s 6.9 m/s.

(d) The direction of ball 3 1s at —30° counterclockwise from the +x axis.
(e) Now we use the momentum equation to find the final velocity of ball 1:
V=v,-2vcos@=10 m/s—2(693 m/s) cos30°=-2.0m/s.

So the speed of ball 1 is [V 1=2.0 m/s.

(f) The minus sign indicates that it bounces back in the — x direction. The angle is —180°.



A Quiz

Consider a proton (mass m  and kinetic energy E ) colliding head
on with an electron (mass m,) initially at rest. What 1s the
maximum kinetic energy (E.) that can be delivered to the electron?



A Quiz

Consider a proton (mass m = 1836m, and
kinetic energy E ) colliding head on with an
electron (mass m,) initially at rest. What 1s
the maximum kinetic energy (E,) that can be

delivered to the electron? 1) Ee _ Ep 2) Ee < Ep 3) Ee S Ep
4) not enough information

c X



A Quiz

Conservation of Momentum m V, =m_V, +m v,

1 1 1

Conservation of Energy Empviz = Emprz +EmeV§
1

E, EEmpr and E_ :%mevﬁ
E =+ v E_<E
’ (1+me/mp)2 PP
Consider a proton (mass m = 1836m, and
kinetic energy E ) colliding head on with an
electron (mass m,) initially at rest. What 1s

the maximum kinetic energy (E,) that can be C X

delivered to the electron?
4) not enoug ormation

4m_ /m_




